File size: 16,814 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Sequence, Tuple, Union

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmdet.models.utils import multi_apply
from mmdet.utils import (ConfigType, OptConfigType, OptInstanceList,
                         OptMultiConfig)
from mmengine.dist import get_dist_info
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor

from mmyolo.registry import MODELS, TASK_UTILS
from ..utils import gt_instances_preprocess, make_divisible
from .yolov5_head import YOLOv5Head


@MODELS.register_module()
class YOLOv8HeadModule(BaseModule):
    """YOLOv8HeadModule head module used in `YOLOv8`.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (Union[int, Sequence]): Number of channels in the input
            feature map.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        num_base_priors (int): The number of priors (points) at a point
            on the feature grid.
        featmap_strides (Sequence[int]): Downsample factor of each feature map.
             Defaults to [8, 16, 32].
        reg_max (int): Max value of integral set :math: ``{0, ..., reg_max-1}``
            in QFL setting. Defaults to 16.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
            layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
            Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: Union[int, Sequence],
                 widen_factor: float = 1.0,
                 num_base_priors: int = 1,
                 featmap_strides: Sequence[int] = (8, 16, 32),
                 reg_max: int = 16,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 init_cfg: OptMultiConfig = None):
        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.featmap_strides = featmap_strides
        self.num_levels = len(self.featmap_strides)
        self.num_base_priors = num_base_priors
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.in_channels = in_channels
        self.reg_max = reg_max

        in_channels = []
        for channel in self.in_channels:
            channel = make_divisible(channel, widen_factor)
            in_channels.append(channel)
        self.in_channels = in_channels

        self._init_layers()

    def init_weights(self, prior_prob=0.01):
        """Initialize the weight and bias of PPYOLOE head."""
        super().init_weights()
        for reg_pred, cls_pred, stride in zip(self.reg_preds, self.cls_preds,
                                              self.featmap_strides):
            reg_pred[-1].bias.data[:] = 1.0  # box
            # cls (.01 objects, 80 classes, 640 img)
            cls_pred[-1].bias.data[:self.num_classes] = math.log(
                5 / self.num_classes / (640 / stride)**2)

    def _init_layers(self):
        """initialize conv layers in YOLOv8 head."""
        # Init decouple head
        self.cls_preds = nn.ModuleList()
        self.reg_preds = nn.ModuleList()

        reg_out_channels = max(
            (16, self.in_channels[0] // 4, self.reg_max * 4))
        cls_out_channels = max(self.in_channels[0], self.num_classes)

        for i in range(self.num_levels):
            self.reg_preds.append(
                nn.Sequential(
                    ConvModule(
                        in_channels=self.in_channels[i],
                        out_channels=reg_out_channels,
                        kernel_size=3,
                        stride=1,
                        padding=1,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg),
                    ConvModule(
                        in_channels=reg_out_channels,
                        out_channels=reg_out_channels,
                        kernel_size=3,
                        stride=1,
                        padding=1,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg),
                    nn.Conv2d(
                        in_channels=reg_out_channels,
                        out_channels=4 * self.reg_max,
                        kernel_size=1)))
            self.cls_preds.append(
                nn.Sequential(
                    ConvModule(
                        in_channels=self.in_channels[i],
                        out_channels=cls_out_channels,
                        kernel_size=3,
                        stride=1,
                        padding=1,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg),
                    ConvModule(
                        in_channels=cls_out_channels,
                        out_channels=cls_out_channels,
                        kernel_size=3,
                        stride=1,
                        padding=1,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg),
                    nn.Conv2d(
                        in_channels=cls_out_channels,
                        out_channels=self.num_classes,
                        kernel_size=1)))

        proj = torch.arange(self.reg_max, dtype=torch.float)
        self.register_buffer('proj', proj, persistent=False)

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            Tuple[List]: A tuple of multi-level classification scores, bbox
            predictions
        """
        assert len(x) == self.num_levels
        return multi_apply(self.forward_single, x, self.cls_preds,
                           self.reg_preds)

    def forward_single(self, x: torch.Tensor, cls_pred: nn.ModuleList,
                       reg_pred: nn.ModuleList) -> Tuple:
        """Forward feature of a single scale level."""
        b, _, h, w = x.shape
        cls_logit = cls_pred(x)
        bbox_dist_preds = reg_pred(x)
        if self.reg_max > 1:
            bbox_dist_preds = bbox_dist_preds.reshape(
                [-1, 4, self.reg_max, h * w]).permute(0, 3, 1, 2)

            # TODO: The get_flops script cannot handle the situation of
            #  matmul, and needs to be fixed later
            # bbox_preds = bbox_dist_preds.softmax(3).matmul(self.proj)
            bbox_preds = bbox_dist_preds.softmax(3).matmul(
                self.proj.view([-1, 1])).squeeze(-1)
            bbox_preds = bbox_preds.transpose(1, 2).reshape(b, -1, h, w)
        else:
            bbox_preds = bbox_dist_preds
        if self.training:
            return cls_logit, bbox_preds, bbox_dist_preds
        else:
            return cls_logit, bbox_preds


@MODELS.register_module()
class YOLOv8Head(YOLOv5Head):
    """YOLOv8Head head used in `YOLOv8`.

    Args:
        head_module(:obj:`ConfigDict` or dict): Base module used for YOLOv8Head
        prior_generator(dict): Points generator feature maps
            in 2D points-based detectors.
        bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
        loss_dfl (:obj:`ConfigDict` or dict): Config of Distribution Focal
            Loss.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
            anchor head. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            anchor head. Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 head_module: ConfigType,
                 prior_generator: ConfigType = dict(
                     type='mmdet.MlvlPointGenerator',
                     offset=0.5,
                     strides=[8, 16, 32]),
                 bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
                 loss_cls: ConfigType = dict(
                     type='mmdet.CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='none',
                     loss_weight=0.5),
                 loss_bbox: ConfigType = dict(
                     type='IoULoss',
                     iou_mode='ciou',
                     bbox_format='xyxy',
                     reduction='sum',
                     loss_weight=7.5,
                     return_iou=False),
                 loss_dfl=dict(
                     type='mmdet.DistributionFocalLoss',
                     reduction='mean',
                     loss_weight=1.5 / 4),
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptMultiConfig = None
                 ):
        super().__init__(
            head_module=head_module,
            prior_generator=prior_generator,
            bbox_coder=bbox_coder,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)
        self.loss_dfl = MODELS.build(loss_dfl)
        # YOLOv8 doesn't need loss_obj
        self.loss_obj = None

    def special_init(self):
        """Since YOLO series algorithms will inherit from YOLOv5Head, but
        different algorithms have special initialization process.

        The special_init function is designed to deal with this situation.
        """

        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg.assigner)

            # Add common attributes to reduce calculation
            self.featmap_sizes_train = None
            self.num_level_priors = None
            self.flatten_priors_train = None
            self.stride_tensor = None

    def loss_by_feat(
            self,
            cls_scores: Sequence[Tensor],
            bbox_preds: Sequence[Tensor],
            bbox_dist_preds: Sequence[Tensor],
            batch_gt_instances: Sequence[InstanceData],
            batch_img_metas: Sequence[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (Sequence[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            bbox_dist_preds (Sequence[Tensor]): Box distribution logits for
                each scale level with shape (bs, reg_max + 1, H*W, 4).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
        Returns:
            dict[str, Tensor]: A dictionary of losses.
        """
        num_imgs = len(batch_img_metas)

        current_featmap_sizes = [
            cls_score.shape[2:] for cls_score in cls_scores
        ]
        # If the shape does not equal, generate new one
        if current_featmap_sizes != self.featmap_sizes_train:
            self.featmap_sizes_train = current_featmap_sizes

            mlvl_priors_with_stride = self.prior_generator.grid_priors(
                self.featmap_sizes_train,
                dtype=cls_scores[0].dtype,
                device=cls_scores[0].device,
                with_stride=True)

            self.num_level_priors = [len(n) for n in mlvl_priors_with_stride]
            self.flatten_priors_train = torch.cat(
                mlvl_priors_with_stride, dim=0)
            self.stride_tensor = self.flatten_priors_train[..., [2]]

        # gt info
        gt_info = gt_instances_preprocess(batch_gt_instances, num_imgs)
        gt_labels = gt_info[:, :, :1]
        gt_bboxes = gt_info[:, :, 1:]  # xyxy
        pad_bbox_flag = (gt_bboxes.sum(-1, keepdim=True) > 0).float()

        # pred info
        flatten_cls_preds = [
            cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                 self.num_classes)
            for cls_pred in cls_scores
        ]
        flatten_pred_bboxes = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        # (bs, n, 4 * reg_max)
        flatten_pred_dists = [
            bbox_pred_org.reshape(num_imgs, -1, self.head_module.reg_max * 4)
            for bbox_pred_org in bbox_dist_preds
        ]

        flatten_dist_preds = torch.cat(flatten_pred_dists, dim=1)
        flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1)
        flatten_pred_bboxes = torch.cat(flatten_pred_bboxes, dim=1)
        flatten_pred_bboxes = self.bbox_coder.decode(
            self.flatten_priors_train[..., :2], flatten_pred_bboxes,
            self.stride_tensor[..., 0])

        assigned_result = self.assigner(
            (flatten_pred_bboxes.detach()).type(gt_bboxes.dtype),
            flatten_cls_preds.detach().sigmoid(), self.flatten_priors_train,
            gt_labels, gt_bboxes, pad_bbox_flag)

        assigned_bboxes = assigned_result['assigned_bboxes']
        assigned_scores = assigned_result['assigned_scores']
        fg_mask_pre_prior = assigned_result['fg_mask_pre_prior']

        assigned_scores_sum = assigned_scores.sum().clamp(min=1)

        loss_cls = self.loss_cls(flatten_cls_preds, assigned_scores).sum()
        loss_cls /= assigned_scores_sum

        # rescale bbox
        assigned_bboxes /= self.stride_tensor
        flatten_pred_bboxes /= self.stride_tensor

        # select positive samples mask
        num_pos = fg_mask_pre_prior.sum()
        if num_pos > 0:
            # when num_pos > 0, assigned_scores_sum will >0, so the loss_bbox
            # will not report an error
            # iou loss
            prior_bbox_mask = fg_mask_pre_prior.unsqueeze(-1).repeat([1, 1, 4])
            pred_bboxes_pos = torch.masked_select(
                flatten_pred_bboxes, prior_bbox_mask).reshape([-1, 4])
            assigned_bboxes_pos = torch.masked_select(
                assigned_bboxes, prior_bbox_mask).reshape([-1, 4])
            bbox_weight = torch.masked_select(
                assigned_scores.sum(-1), fg_mask_pre_prior).unsqueeze(-1)
            loss_bbox = self.loss_bbox(
                pred_bboxes_pos, assigned_bboxes_pos,
                weight=bbox_weight) / assigned_scores_sum

            # dfl loss
            pred_dist_pos = flatten_dist_preds[fg_mask_pre_prior]
            assigned_ltrb = self.bbox_coder.encode(
                self.flatten_priors_train[..., :2] / self.stride_tensor,
                assigned_bboxes,
                max_dis=self.head_module.reg_max - 1,
                eps=0.01)
            assigned_ltrb_pos = torch.masked_select(
                assigned_ltrb, prior_bbox_mask).reshape([-1, 4])
            loss_dfl = self.loss_dfl(
                pred_dist_pos.reshape(-1, self.head_module.reg_max),
                assigned_ltrb_pos.reshape(-1),
                weight=bbox_weight.expand(-1, 4).reshape(-1),
                avg_factor=assigned_scores_sum)
        else:
            loss_bbox = flatten_pred_bboxes.sum() * 0
            loss_dfl = flatten_pred_bboxes.sum() * 0
        _, world_size = get_dist_info()
        return dict(
            loss_cls=loss_cls * num_imgs * world_size,
            loss_bbox=loss_bbox * num_imgs * world_size,
            loss_dfl=loss_dfl * num_imgs * world_size)