Spaces:
Runtime error
Runtime error
File size: 11,136 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from typing import List, Union
import torch
import torch.nn as nn
from mmdet.utils import ConfigType, OptMultiConfig
from mmengine.model import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm
from mmyolo.registry import MODELS
@MODELS.register_module()
class BaseYOLONeck(BaseModule, metaclass=ABCMeta):
"""Base neck used in YOLO series.
.. code:: text
P5 neck model structure diagram
+--------+ +-------+
|top_down|----------+--------->| out |---> output0
| layer1 | | | layer0|
+--------+ | +-------+
stride=8 ^ |
idx=0 +------+ +--------+ |
-----> |reduce|--->| cat | |
|layer0| +--------+ |
+------+ ^ v
+--------+ +-----------+
|upsample| |downsample |
| layer1 | | layer0 |
+--------+ +-----------+
^ |
+--------+ v
|top_down| +-----------+
| layer2 |--->| cat |
+--------+ +-----------+
stride=16 ^ v
idx=1 +------+ +--------+ +-----------+ +-------+
-----> |reduce|--->| cat | | bottom_up |--->| out |---> output1
|layer1| +--------+ | layer0 | | layer1|
+------+ ^ +-----------+ +-------+
| v
+--------+ +-----------+
|upsample| |downsample |
| layer2 | | layer1 |
stride=32 +--------+ +-----------+
idx=2 +------+ ^ v
-----> |reduce| | +-----------+
|layer2|---------+------->| cat |
+------+ +-----------+
v
+-----------+ +-------+
| bottom_up |--->| out |---> output2
| layer1 | | layer2|
+-----------+ +-------+
.. code:: text
P6 neck model structure diagram
+--------+ +-------+
|top_down|----------+--------->| out |---> output0
| layer1 | | | layer0|
+--------+ | +-------+
stride=8 ^ |
idx=0 +------+ +--------+ |
-----> |reduce|--->| cat | |
|layer0| +--------+ |
+------+ ^ v
+--------+ +-----------+
|upsample| |downsample |
| layer1 | | layer0 |
+--------+ +-----------+
^ |
+--------+ v
|top_down| +-----------+
| layer2 |--->| cat |
+--------+ +-----------+
stride=16 ^ v
idx=1 +------+ +--------+ +-----------+ +-------+
-----> |reduce|--->| cat | | bottom_up |--->| out |---> output1
|layer1| +--------+ | layer0 | | layer1|
+------+ ^ +-----------+ +-------+
| v
+--------+ +-----------+
|upsample| |downsample |
| layer2 | | layer1 |
+--------+ +-----------+
^ |
+--------+ v
|top_down| +-----------+
| layer3 |--->| cat |
+--------+ +-----------+
stride=32 ^ v
idx=2 +------+ +--------+ +-----------+ +-------+
-----> |reduce|--->| cat | | bottom_up |--->| out |---> output2
|layer2| +--------+ | layer1 | | layer2|
+------+ ^ +-----------+ +-------+
| v
+--------+ +-----------+
|upsample| |downsample |
| layer3 | | layer2 |
+--------+ +-----------+
stride=64 ^ v
idx=3 +------+ | +-----------+
-----> |reduce|---------+------->| cat |
|layer3| +-----------+
+------+ v
+-----------+ +-------+
| bottom_up |--->| out |---> output3
| layer2 | | layer3|
+-----------+ +-------+
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
upsample_feats_cat_first (bool): Whether the output features are
concat first after upsampling in the topdown module.
Defaults to True. Currently only YOLOv7 is false.
freeze_all(bool): Whether to freeze the model. Defaults to False
norm_cfg (dict): Config dict for normalization layer.
Defaults to None.
act_cfg (dict): Config dict for activation layer.
Defaults to None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels: List[int],
out_channels: Union[int, List[int]],
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
upsample_feats_cat_first: bool = True,
freeze_all: bool = False,
norm_cfg: ConfigType = None,
act_cfg: ConfigType = None,
init_cfg: OptMultiConfig = None,
**kwargs):
super().__init__(init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
self.deepen_factor = deepen_factor
self.widen_factor = widen_factor
self.upsample_feats_cat_first = upsample_feats_cat_first
self.freeze_all = freeze_all
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.reduce_layers = nn.ModuleList()
for idx in range(len(in_channels)):
self.reduce_layers.append(self.build_reduce_layer(idx))
# build top-down blocks
self.upsample_layers = nn.ModuleList()
self.top_down_layers = nn.ModuleList()
for idx in range(len(in_channels) - 1, 0, -1):
self.upsample_layers.append(self.build_upsample_layer(idx=idx, n_layers=len(in_channels)))
self.top_down_layers.append(self.build_top_down_layer(idx))
# build bottom-up blocks
self.downsample_layers = nn.ModuleList()
self.bottom_up_layers = nn.ModuleList()
for idx in range(len(in_channels) - 1):
self.downsample_layers.append(self.build_downsample_layer(idx))
self.bottom_up_layers.append(self.build_bottom_up_layer(idx))
self.out_layers = nn.ModuleList()
for idx in range(len(in_channels)):
self.out_layers.append(self.build_out_layer(idx))
@abstractmethod
def build_reduce_layer(self, idx: int):
"""build reduce layer."""
pass
@abstractmethod
def build_upsample_layer(self, idx: int):
"""build upsample layer."""
pass
@abstractmethod
def build_top_down_layer(self, idx: int):
"""build top down layer."""
pass
@abstractmethod
def build_downsample_layer(self, idx: int):
"""build downsample layer."""
pass
@abstractmethod
def build_bottom_up_layer(self, idx: int):
"""build bottom up layer."""
pass
@abstractmethod
def build_out_layer(self, idx: int):
"""build out layer."""
pass
def _freeze_all(self):
"""Freeze the model."""
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
"""Convert the model into training mode while keep the normalization
layer freezed."""
super().train(mode)
if self.freeze_all:
self._freeze_all()
def forward(self, inputs: List[torch.Tensor]) -> tuple:
"""Forward function."""
assert len(inputs) == len(self.in_channels)
# reduce layers
reduce_outs = []
for idx in range(len(self.in_channels)):
reduce_outs.append(self.reduce_layers[idx](inputs[idx]))
# top-down path
inner_outs = [reduce_outs[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_high = inner_outs[0]
feat_low = reduce_outs[idx - 1]
upsample_feat = self.upsample_layers[len(self.in_channels) - 1 -
idx](
feat_high)
if self.upsample_feats_cat_first:
top_down_layer_inputs = torch.cat([upsample_feat, feat_low], 1)
else:
top_down_layer_inputs = torch.cat([feat_low, upsample_feat], 1)
inner_out = self.top_down_layers[len(self.in_channels) - 1 - idx](
top_down_layer_inputs)
inner_outs.insert(0, inner_out)
# bottom-up path
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_high = inner_outs[idx + 1]
downsample_feat = self.downsample_layers[idx](feat_low)
out = self.bottom_up_layers[idx](
torch.cat([downsample_feat, feat_high], 1))
outs.append(out)
# out_layers
results = []
for idx in range(len(self.in_channels)):
results.append(self.out_layers[idx](outs[idx]))
return tuple(results)
|