Spaces:
Runtime error
Runtime error
File size: 6,273 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmdet.models.backbones.csp_darknet import CSPLayer
from mmdet.utils import ConfigType, OptMultiConfig
from mmyolo.registry import MODELS
from ..utils import make_divisible, make_round
from .base_yolo_neck import BaseYOLONeck
@MODELS.register_module()
class YOLOv5PAFPN(BaseYOLONeck):
"""Path Aggregation Network used in YOLOv5.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1.
freeze_all(bool): Whether to freeze the model
norm_cfg (dict): Config dict for normalization layer.
Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels: List[int],
out_channels: Union[List[int], int],
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
num_csp_blocks: int = 1,
freeze_all: bool = False,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None):
self.num_csp_blocks = num_csp_blocks
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
deepen_factor=deepen_factor,
widen_factor=widen_factor,
freeze_all=freeze_all,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
def init_weights(self):
if self.init_cfg is None:
"""Initialize the parameters."""
for m in self.modules():
if isinstance(m, torch.nn.Conv2d):
# In order to be consistent with the source code,
# reset the Conv2d initialization parameters
m.reset_parameters()
else:
super().init_weights()
def build_reduce_layer(self, idx: int) -> nn.Module:
"""build reduce layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The reduce layer.
"""
if idx == len(self.in_channels) - 1:
layer = ConvModule(
make_divisible(self.in_channels[idx], self.widen_factor),
make_divisible(self.in_channels[idx - 1], self.widen_factor),
1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
else:
layer = nn.Identity()
return layer
def build_upsample_layer(self, *args, **kwargs) -> nn.Module:
"""build upsample layer."""
return nn.Upsample(scale_factor=2, mode='nearest')
def build_top_down_layer(self, idx: int):
"""build top down layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The top down layer.
"""
if idx == 1:
return CSPLayer(
make_divisible(self.in_channels[idx - 1] * 2,
self.widen_factor),
make_divisible(self.in_channels[idx - 1], self.widen_factor),
num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
add_identity=False,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
else:
return nn.Sequential(
CSPLayer(
make_divisible(self.in_channels[idx - 1] * 2,
self.widen_factor),
make_divisible(self.in_channels[idx - 1],
self.widen_factor),
num_blocks=make_round(self.num_csp_blocks,
self.deepen_factor),
add_identity=False,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
make_divisible(self.in_channels[idx - 1],
self.widen_factor),
make_divisible(self.in_channels[idx - 2],
self.widen_factor),
kernel_size=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
def build_downsample_layer(self, idx: int) -> nn.Module:
"""build downsample layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The downsample layer.
"""
return ConvModule(
make_divisible(self.in_channels[idx], self.widen_factor),
make_divisible(self.in_channels[idx], self.widen_factor),
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def build_bottom_up_layer(self, idx: int) -> nn.Module:
"""build bottom up layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The bottom up layer.
"""
return CSPLayer(
make_divisible(self.in_channels[idx] * 2, self.widen_factor),
make_divisible(self.in_channels[idx + 1], self.widen_factor),
num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
add_identity=False,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def build_out_layer(self, *args, **kwargs) -> nn.Module:
"""build out layer."""
return nn.Identity()
|