File size: 10,901 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmdet.structures.bbox import BaseBoxes
from mmdet.utils import ConfigType
from torch import Tensor

from mmyolo.registry import TASK_UTILS

INF = 100000000
EPS = 1.0e-7


def find_inside_points(boxes: Tensor,
                       points: Tensor,
                       box_dim: int = 4,
                       eps: float = 0.01) -> Tensor:
    """Find inside box points in batches. Boxes dimension must be 3.

    Args:
        boxes (Tensor): Boxes tensor. Must be batch input.
            Has shape of (batch_size, n_boxes, box_dim).
        points (Tensor): Points coordinates. Has shape of (n_points, 2).
        box_dim (int): The dimension of box. 4 means horizontal box and
            5 means rotated box. Defaults to 4.
        eps (float): Make sure the points are inside not on the boundary.
            Only use in rotated boxes. Defaults to 0.01.

    Returns:
        Tensor: A BoolTensor indicating whether a point is inside
        boxes. The index has shape of (n_points, batch_size, n_boxes).
    """
    if box_dim == 4:
        # Horizontal Boxes
        lt_ = points[:, None, None] - boxes[..., :2]
        rb_ = boxes[..., 2:] - points[:, None, None]

        deltas = torch.cat([lt_, rb_], dim=-1)
        is_in_gts = deltas.min(dim=-1).values > 0

    elif box_dim == 5:
        # Rotated Boxes
        points = points[:, None, None]
        ctrs, wh, t = torch.split(boxes, [2, 2, 1], dim=-1)
        cos_value, sin_value = torch.cos(t), torch.sin(t)
        matrix = torch.cat([cos_value, sin_value, -sin_value, cos_value],
                           dim=-1).reshape(*boxes.shape[:-1], 2, 2)

        offset = points - ctrs
        offset = torch.matmul(matrix, offset[..., None])
        offset = offset.squeeze(-1)
        offset_x, offset_y = offset[..., 0], offset[..., 1]
        w, h = wh[..., 0], wh[..., 1]
        is_in_gts = (offset_x <= w / 2 - eps) & (offset_x >= - w / 2 + eps) & \
                    (offset_y <= h / 2 - eps) & (offset_y >= - h / 2 + eps)
    else:
        raise NotImplementedError(f'Unsupport box_dim:{box_dim}')

    return is_in_gts


def get_box_center(boxes: Tensor, box_dim: int = 4) -> Tensor:
    """Return a tensor representing the centers of boxes.

    Args:
        boxes (Tensor): Boxes tensor. Has shape of (b, n, box_dim)
        box_dim (int): The dimension of box. 4 means horizontal box and
            5 means rotated box. Defaults to 4.

    Returns:
        Tensor: Centers have shape of (b, n, 2)
    """
    if box_dim == 4:
        # Horizontal Boxes, (x1, y1, x2, y2)
        return (boxes[..., :2] + boxes[..., 2:]) / 2.0
    elif box_dim == 5:
        # Rotated Boxes, (x, y, w, h, a)
        return boxes[..., :2]
    else:
        raise NotImplementedError(f'Unsupported box_dim:{box_dim}')


@TASK_UTILS.register_module()
class BatchDynamicSoftLabelAssigner(nn.Module):
    """Computes matching between predictions and ground truth with dynamic soft
    label assignment.

    Args:
        num_classes (int): number of class
        soft_center_radius (float): Radius of the soft center prior.
            Defaults to 3.0.
        topk (int): Select top-k predictions to calculate dynamic k
            best matches for each gt. Defaults to 13.
        iou_weight (float): The scale factor of iou cost. Defaults to 3.0.
        iou_calculator (ConfigType): Config of overlaps Calculator.
            Defaults to dict(type='BboxOverlaps2D').
        batch_iou (bool): Use batch input when calculate IoU.
            If set to False use loop instead. Defaults to True.
    """

    def __init__(
        self,
        num_classes,
        soft_center_radius: float = 3.0,
        topk: int = 13,
        iou_weight: float = 3.0,
        iou_calculator: ConfigType = dict(type='mmdet.BboxOverlaps2D'),
        batch_iou: bool = True,
    ) -> None:
        super().__init__()
        self.num_classes = num_classes
        self.soft_center_radius = soft_center_radius
        self.topk = topk
        self.iou_weight = iou_weight
        self.iou_calculator = TASK_UTILS.build(iou_calculator)
        self.batch_iou = batch_iou

    @torch.no_grad()
    def forward(self, pred_bboxes: Tensor, pred_scores: Tensor, priors: Tensor,
                gt_labels: Tensor, gt_bboxes: Tensor,
                pad_bbox_flag: Tensor) -> dict:
        num_gt = gt_bboxes.size(1)
        decoded_bboxes = pred_bboxes
        batch_size, num_bboxes, box_dim = decoded_bboxes.size()

        if num_gt == 0 or num_bboxes == 0:
            return {
                'assigned_labels':
                gt_labels.new_full(
                    pred_scores[..., 0].shape,
                    self.num_classes,
                    dtype=torch.long),
                'assigned_labels_weights':
                gt_bboxes.new_full(pred_scores[..., 0].shape, 1),
                'assigned_bboxes':
                gt_bboxes.new_full(pred_bboxes.shape, 0),
                'assign_metrics':
                gt_bboxes.new_full(pred_scores[..., 0].shape, 0)
            }

        prior_center = priors[:, :2]
        if isinstance(gt_bboxes, BaseBoxes):
            raise NotImplementedError(
                f'type of {type(gt_bboxes)} are not implemented !')
        else:
            is_in_gts = find_inside_points(gt_bboxes, prior_center, box_dim)

        # (N_points, B, N_boxes)
        is_in_gts = is_in_gts * pad_bbox_flag[..., 0][None]
        # (N_points, B, N_boxes) -> (B, N_points, N_boxes)
        is_in_gts = is_in_gts.permute(1, 0, 2)
        # (B, N_points)
        valid_mask = is_in_gts.sum(dim=-1) > 0

        gt_center = get_box_center(gt_bboxes, box_dim)

        strides = priors[..., 2]
        distance = (priors[None].unsqueeze(2)[..., :2] -
                    gt_center[:, None, :, :]
                    ).pow(2).sum(-1).sqrt() / strides[None, :, None]

        # prevent overflow
        distance = distance * valid_mask.unsqueeze(-1)
        soft_center_prior = torch.pow(10, distance - self.soft_center_radius)

        if self.batch_iou:
            pairwise_ious = self.iou_calculator(decoded_bboxes, gt_bboxes)
        else:
            ious = []
            for box, gt in zip(decoded_bboxes, gt_bboxes):
                iou = self.iou_calculator(box, gt)
                ious.append(iou)
            pairwise_ious = torch.stack(ious, dim=0)

        iou_cost = -torch.log(pairwise_ious + EPS) * self.iou_weight

        # select the predicted scores corresponded to the gt_labels
        pairwise_pred_scores = pred_scores.permute(0, 2, 1)
        idx = torch.zeros([2, batch_size, num_gt], dtype=torch.long)
        idx[0] = torch.arange(end=batch_size).view(-1, 1).repeat(1, num_gt)
        idx[1] = gt_labels.long().squeeze(-1)
        pairwise_pred_scores = pairwise_pred_scores[idx[0],
                                                    idx[1]].permute(0, 2, 1)
        # classification cost
        scale_factor = pairwise_ious - pairwise_pred_scores.sigmoid()
        pairwise_cls_cost = F.binary_cross_entropy_with_logits(
            pairwise_pred_scores, pairwise_ious,
            reduction='none') * scale_factor.abs().pow(2.0)

        cost_matrix = pairwise_cls_cost + iou_cost + soft_center_prior

        max_pad_value = torch.ones_like(cost_matrix) * INF
        cost_matrix = torch.where(valid_mask[..., None].repeat(1, 1, num_gt),
                                  cost_matrix, max_pad_value)

        (matched_pred_ious, matched_gt_inds,
         fg_mask_inboxes) = self.dynamic_k_matching(cost_matrix, pairwise_ious,
                                                    pad_bbox_flag)

        del pairwise_ious, cost_matrix

        batch_index = (fg_mask_inboxes > 0).nonzero(as_tuple=True)[0]

        assigned_labels = gt_labels.new_full(pred_scores[..., 0].shape,
                                             self.num_classes)
        assigned_labels[fg_mask_inboxes] = gt_labels[
            batch_index, matched_gt_inds].squeeze(-1)
        assigned_labels = assigned_labels.long()

        assigned_labels_weights = gt_bboxes.new_full(pred_scores[..., 0].shape,
                                                     1)

        assigned_bboxes = gt_bboxes.new_full(pred_bboxes.shape, 0)
        assigned_bboxes[fg_mask_inboxes] = gt_bboxes[batch_index,
                                                     matched_gt_inds]

        assign_metrics = gt_bboxes.new_full(pred_scores[..., 0].shape, 0)
        assign_metrics[fg_mask_inboxes] = matched_pred_ious

        return dict(
            assigned_labels=assigned_labels,
            assigned_labels_weights=assigned_labels_weights,
            assigned_bboxes=assigned_bboxes,
            assign_metrics=assign_metrics)

    def dynamic_k_matching(
            self, cost_matrix: Tensor, pairwise_ious: Tensor,
            pad_bbox_flag: int) -> Tuple[Tensor, Tensor, Tensor]:
        """Use IoU and matching cost to calculate the dynamic top-k positive
        targets.

        Args:
            cost_matrix (Tensor): Cost matrix.
            pairwise_ious (Tensor): Pairwise iou matrix.
            num_gt (int): Number of gt.
            valid_mask (Tensor): Mask for valid bboxes.
        Returns:
            tuple: matched ious and gt indexes.
        """
        matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
        # select candidate topk ious for dynamic-k calculation
        candidate_topk = min(self.topk, pairwise_ious.size(1))
        topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
        # calculate dynamic k for each gt
        dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)

        num_gts = pad_bbox_flag.sum((1, 2)).int()
        # sorting the batch cost matirx is faster than topk
        _, sorted_indices = torch.sort(cost_matrix, dim=1)
        for b in range(pad_bbox_flag.shape[0]):
            for gt_idx in range(num_gts[b]):
                topk_ids = sorted_indices[b, :dynamic_ks[b, gt_idx], gt_idx]
                matching_matrix[b, :, gt_idx][topk_ids] = 1

        del topk_ious, dynamic_ks

        prior_match_gt_mask = matching_matrix.sum(2) > 1
        if prior_match_gt_mask.sum() > 0:
            cost_min, cost_argmin = torch.min(
                cost_matrix[prior_match_gt_mask, :], dim=1)
            matching_matrix[prior_match_gt_mask, :] *= 0
            matching_matrix[prior_match_gt_mask, cost_argmin] = 1

        # get foreground mask inside box and center prior
        fg_mask_inboxes = matching_matrix.sum(2) > 0
        matched_pred_ious = (matching_matrix *
                             pairwise_ious).sum(2)[fg_mask_inboxes]
        matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1)
        return matched_pred_ious, matched_gt_inds, fg_mask_inboxes