Spaces:
Runtime error
Runtime error
File size: 13,143 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from mmyolo.models.losses import bbox_overlaps
from mmyolo.registry import TASK_UTILS
from .utils import (select_candidates_in_gts, select_highest_overlaps,
yolov6_iou_calculator)
@TASK_UTILS.register_module()
class BatchTaskAlignedAssigner(nn.Module):
"""This code referenced to
https://github.com/meituan/YOLOv6/blob/main/yolov6/
assigners/tal_assigner.py.
Batch Task aligned assigner base on the paper:
`TOOD: Task-aligned One-stage Object Detection.
<https://arxiv.org/abs/2108.07755>`_.
Assign a corresponding gt bboxes or background to a batch of
predicted bboxes. Each bbox will be assigned with `0` or a
positive integer indicating the ground truth index.
- 0: negative sample, no assigned gt
- positive integer: positive sample, index (1-based) of assigned gt
Args:
num_classes (int): number of class
topk (int): number of bbox selected in each level
alpha (float): Hyper-parameters related to alignment_metrics.
Defaults to 1.0
beta (float): Hyper-parameters related to alignment_metrics.
Defaults to 6.
eps (float): Eps to avoid log(0). Default set to 1e-9
use_ciou (bool): Whether to use ciou while calculating iou.
Defaults to False.
"""
def __init__(self,
num_classes: int,
topk: int = 13,
alpha: float = 1.0,
beta: float = 6.0,
eps: float = 1e-7,
use_ciou: bool = False):
super().__init__()
self.num_classes = num_classes
self.topk = topk
self.alpha = alpha
self.beta = beta
self.eps = eps
self.use_ciou = use_ciou
@torch.no_grad()
def forward(
self,
pred_bboxes: Tensor,
pred_scores: Tensor,
priors: Tensor,
gt_labels: Tensor,
gt_bboxes: Tensor,
pad_bbox_flag: Tensor,
) -> dict:
"""Assign gt to bboxes.
The assignment is done in following steps
1. compute alignment metric between all bbox (bbox of all pyramid
levels) and gt
2. select top-k bbox as candidates for each gt
3. limit the positive sample's center in gt (because the anchor-free
detector only can predict positive distance)
Args:
pred_bboxes (Tensor): Predict bboxes,
shape(batch_size, num_priors, 4)
pred_scores (Tensor): Scores of predict bboxes,
shape(batch_size, num_priors, num_classes)
priors (Tensor): Model priors, shape (num_priors, 4)
gt_labels (Tensor): Ground true labels,
shape(batch_size, num_gt, 1)
gt_bboxes (Tensor): Ground true bboxes,
shape(batch_size, num_gt, 4)
pad_bbox_flag (Tensor): Ground truth bbox mask,
1 means bbox, 0 means no bbox,
shape(batch_size, num_gt, 1)
Returns:
assigned_result (dict) Assigned result:
assigned_labels (Tensor): Assigned labels,
shape(batch_size, num_priors)
assigned_bboxes (Tensor): Assigned boxes,
shape(batch_size, num_priors, 4)
assigned_scores (Tensor): Assigned scores,
shape(batch_size, num_priors, num_classes)
fg_mask_pre_prior (Tensor): Force ground truth matching mask,
shape(batch_size, num_priors)
"""
# (num_priors, 4) -> (num_priors, 2)
priors = priors[:, :2]
batch_size = pred_scores.size(0)
num_gt = gt_bboxes.size(1)
assigned_result = {
'assigned_labels':
gt_bboxes.new_full(pred_scores[..., 0].shape, self.num_classes),
'assigned_bboxes':
gt_bboxes.new_full(pred_bboxes.shape, 0),
'assigned_scores':
gt_bboxes.new_full(pred_scores.shape, 0),
'fg_mask_pre_prior':
gt_bboxes.new_full(pred_scores[..., 0].shape, 0)
}
if num_gt == 0:
return assigned_result
pos_mask, alignment_metrics, overlaps = self.get_pos_mask(
pred_bboxes, pred_scores, priors, gt_labels, gt_bboxes,
pad_bbox_flag, batch_size, num_gt)
(assigned_gt_idxs, fg_mask_pre_prior,
pos_mask) = select_highest_overlaps(pos_mask, overlaps, num_gt)
# assigned target
assigned_labels, assigned_bboxes, assigned_scores = self.get_targets(
gt_labels, gt_bboxes, assigned_gt_idxs, fg_mask_pre_prior,
batch_size, num_gt)
# normalize
alignment_metrics *= pos_mask
pos_align_metrics = alignment_metrics.max(axis=-1, keepdim=True)[0]
pos_overlaps = (overlaps * pos_mask).max(axis=-1, keepdim=True)[0]
norm_align_metric = (
alignment_metrics * pos_overlaps /
(pos_align_metrics + self.eps)).max(-2)[0].unsqueeze(-1)
assigned_scores = assigned_scores * norm_align_metric
assigned_result['assigned_labels'] = assigned_labels
assigned_result['assigned_bboxes'] = assigned_bboxes
assigned_result['assigned_scores'] = assigned_scores
assigned_result['fg_mask_pre_prior'] = fg_mask_pre_prior.bool()
return assigned_result
def get_pos_mask(self, pred_bboxes: Tensor, pred_scores: Tensor,
priors: Tensor, gt_labels: Tensor, gt_bboxes: Tensor,
pad_bbox_flag: Tensor, batch_size: int,
num_gt: int) -> Tuple[Tensor, Tensor, Tensor]:
"""Get possible mask.
Args:
pred_bboxes (Tensor): Predict bboxes,
shape(batch_size, num_priors, 4)
pred_scores (Tensor): Scores of predict bbox,
shape(batch_size, num_priors, num_classes)
priors (Tensor): Model priors, shape (num_priors, 2)
gt_labels (Tensor): Ground true labels,
shape(batch_size, num_gt, 1)
gt_bboxes (Tensor): Ground true bboxes,
shape(batch_size, num_gt, 4)
pad_bbox_flag (Tensor): Ground truth bbox mask,
1 means bbox, 0 means no bbox,
shape(batch_size, num_gt, 1)
batch_size (int): Batch size.
num_gt (int): Number of ground truth.
Returns:
pos_mask (Tensor): Possible mask,
shape(batch_size, num_gt, num_priors)
alignment_metrics (Tensor): Alignment metrics,
shape(batch_size, num_gt, num_priors)
overlaps (Tensor): Overlaps of gt_bboxes and pred_bboxes,
shape(batch_size, num_gt, num_priors)
"""
# Compute alignment metric between all bbox and gt
alignment_metrics, overlaps = \
self.get_box_metrics(pred_bboxes, pred_scores, gt_labels,
gt_bboxes, batch_size, num_gt)
# get is_in_gts mask
is_in_gts = select_candidates_in_gts(priors, gt_bboxes)
# get topk_metric mask
topk_metric = self.select_topk_candidates(
alignment_metrics * is_in_gts,
topk_mask=pad_bbox_flag.repeat([1, 1, self.topk]).bool())
# merge all mask to a final mask
pos_mask = topk_metric * is_in_gts * pad_bbox_flag
return pos_mask, alignment_metrics, overlaps
def get_box_metrics(self, pred_bboxes: Tensor, pred_scores: Tensor,
gt_labels: Tensor, gt_bboxes: Tensor, batch_size: int,
num_gt: int) -> Tuple[Tensor, Tensor]:
"""Compute alignment metric between all bbox and gt.
Args:
pred_bboxes (Tensor): Predict bboxes,
shape(batch_size, num_priors, 4)
pred_scores (Tensor): Scores of predict bbox,
shape(batch_size, num_priors, num_classes)
gt_labels (Tensor): Ground true labels,
shape(batch_size, num_gt, 1)
gt_bboxes (Tensor): Ground true bboxes,
shape(batch_size, num_gt, 4)
batch_size (int): Batch size.
num_gt (int): Number of ground truth.
Returns:
alignment_metrics (Tensor): Align metric,
shape(batch_size, num_gt, num_priors)
overlaps (Tensor): Overlaps, shape(batch_size, num_gt, num_priors)
"""
pred_scores = pred_scores.permute(0, 2, 1)
gt_labels = gt_labels.to(torch.long)
idx = torch.zeros([2, batch_size, num_gt], dtype=torch.long)
idx[0] = torch.arange(end=batch_size).view(-1, 1).repeat(1, num_gt)
idx[1] = gt_labels.squeeze(-1)
bbox_scores = pred_scores[idx[0], idx[1]]
# TODO: need to replace the yolov6_iou_calculator function
if self.use_ciou:
overlaps = bbox_overlaps(
pred_bboxes.unsqueeze(1),
gt_bboxes.unsqueeze(2),
iou_mode='ciou',
bbox_format='xyxy').clamp(0)
else:
overlaps = yolov6_iou_calculator(gt_bboxes, pred_bboxes)
alignment_metrics = bbox_scores.pow(self.alpha) * overlaps.pow(
self.beta)
return alignment_metrics, overlaps
def select_topk_candidates(self,
alignment_gt_metrics: Tensor,
using_largest_topk: bool = True,
topk_mask: Optional[Tensor] = None) -> Tensor:
"""Compute alignment metric between all bbox and gt.
Args:
alignment_gt_metrics (Tensor): Alignment metric of gt candidates,
shape(batch_size, num_gt, num_priors)
using_largest_topk (bool): Controls whether to using largest or
smallest elements.
topk_mask (Tensor): Topk mask,
shape(batch_size, num_gt, self.topk)
Returns:
Tensor: Topk candidates mask,
shape(batch_size, num_gt, num_priors)
"""
num_priors = alignment_gt_metrics.shape[-1]
topk_metrics, topk_idxs = torch.topk(
alignment_gt_metrics,
self.topk,
axis=-1,
largest=using_largest_topk)
if topk_mask is None:
topk_mask = (topk_metrics.max(axis=-1, keepdim=True) >
self.eps).tile([1, 1, self.topk])
topk_idxs = torch.where(topk_mask, topk_idxs,
torch.zeros_like(topk_idxs))
is_in_topk = F.one_hot(topk_idxs, num_priors).sum(axis=-2)
is_in_topk = torch.where(is_in_topk > 1, torch.zeros_like(is_in_topk),
is_in_topk)
return is_in_topk.to(alignment_gt_metrics.dtype)
def get_targets(self, gt_labels: Tensor, gt_bboxes: Tensor,
assigned_gt_idxs: Tensor, fg_mask_pre_prior: Tensor,
batch_size: int,
num_gt: int) -> Tuple[Tensor, Tensor, Tensor]:
"""Get assigner info.
Args:
gt_labels (Tensor): Ground true labels,
shape(batch_size, num_gt, 1)
gt_bboxes (Tensor): Ground true bboxes,
shape(batch_size, num_gt, 4)
assigned_gt_idxs (Tensor): Assigned ground truth indexes,
shape(batch_size, num_priors)
fg_mask_pre_prior (Tensor): Force ground truth matching mask,
shape(batch_size, num_priors)
batch_size (int): Batch size.
num_gt (int): Number of ground truth.
Returns:
assigned_labels (Tensor): Assigned labels,
shape(batch_size, num_priors)
assigned_bboxes (Tensor): Assigned bboxes,
shape(batch_size, num_priors)
assigned_scores (Tensor): Assigned scores,
shape(batch_size, num_priors)
"""
# assigned target labels
batch_ind = torch.arange(
end=batch_size, dtype=torch.int64, device=gt_labels.device)[...,
None]
assigned_gt_idxs = assigned_gt_idxs + batch_ind * num_gt
assigned_labels = gt_labels.long().flatten()[assigned_gt_idxs]
# assigned target boxes
assigned_bboxes = gt_bboxes.reshape([-1, 4])[assigned_gt_idxs]
# assigned target scores
assigned_labels[assigned_labels < 0] = 0
assigned_scores = F.one_hot(assigned_labels, self.num_classes)
force_gt_scores_mask = fg_mask_pre_prior[:, :, None].repeat(
1, 1, self.num_classes)
assigned_scores = torch.where(force_gt_scores_mask > 0,
assigned_scores,
torch.full_like(assigned_scores, 0))
return assigned_labels, assigned_bboxes, assigned_scores
|