Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import numpy as np | |
import torch | |
from torch import Tensor | |
from mmdet.structures.bbox import BaseBoxes, cat_boxes | |
from mmdet.utils import util_mixins | |
from mmdet.utils.util_random import ensure_rng | |
from ..assigners import AssignResult | |
def random_boxes(num=1, scale=1, rng=None): | |
"""Simple version of ``kwimage.Boxes.random`` | |
Returns: | |
Tensor: shape (n, 4) in x1, y1, x2, y2 format. | |
References: | |
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 | |
Example: | |
>>> num = 3 | |
>>> scale = 512 | |
>>> rng = 0 | |
>>> boxes = random_boxes(num, scale, rng) | |
>>> print(boxes) | |
tensor([[280.9925, 278.9802, 308.6148, 366.1769], | |
[216.9113, 330.6978, 224.0446, 456.5878], | |
[405.3632, 196.3221, 493.3953, 270.7942]]) | |
""" | |
rng = ensure_rng(rng) | |
tlbr = rng.rand(num, 4).astype(np.float32) | |
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2]) | |
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3]) | |
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2]) | |
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3]) | |
tlbr[:, 0] = tl_x * scale | |
tlbr[:, 1] = tl_y * scale | |
tlbr[:, 2] = br_x * scale | |
tlbr[:, 3] = br_y * scale | |
boxes = torch.from_numpy(tlbr) | |
return boxes | |
class SamplingResult(util_mixins.NiceRepr): | |
"""Bbox sampling result. | |
Args: | |
pos_inds (Tensor): Indices of positive samples. | |
neg_inds (Tensor): Indices of negative samples. | |
priors (Tensor): The priors can be anchors or points, | |
or the bboxes predicted by the previous stage. | |
gt_bboxes (Tensor): Ground truth of bboxes. | |
assign_result (:obj:`AssignResult`): Assigning results. | |
gt_flags (Tensor): The Ground truth flags. | |
avg_factor_with_neg (bool): If True, ``avg_factor`` equal to | |
the number of total priors; Otherwise, it is the number of | |
positive priors. Defaults to True. | |
Example: | |
>>> # xdoctest: +IGNORE_WANT | |
>>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA | |
>>> self = SamplingResult.random(rng=10) | |
>>> print(f'self = {self}') | |
self = <SamplingResult({ | |
'neg_inds': tensor([1, 2, 3, 5, 6, 7, 8, | |
9, 10, 11, 12, 13]), | |
'neg_priors': torch.Size([12, 4]), | |
'num_gts': 1, | |
'num_neg': 12, | |
'num_pos': 1, | |
'avg_factor': 13, | |
'pos_assigned_gt_inds': tensor([0]), | |
'pos_inds': tensor([0]), | |
'pos_is_gt': tensor([1], dtype=torch.uint8), | |
'pos_priors': torch.Size([1, 4]) | |
})> | |
""" | |
def __init__(self, | |
pos_inds: Tensor, | |
neg_inds: Tensor, | |
priors: Tensor, | |
gt_bboxes: Tensor, | |
assign_result: AssignResult, | |
gt_flags: Tensor, | |
avg_factor_with_neg: bool = True) -> None: | |
self.pos_inds = pos_inds | |
self.neg_inds = neg_inds | |
self.num_pos = max(pos_inds.numel(), 1) | |
self.num_neg = max(neg_inds.numel(), 1) | |
self.avg_factor_with_neg = avg_factor_with_neg | |
self.avg_factor = self.num_pos + self.num_neg \ | |
if avg_factor_with_neg else self.num_pos | |
self.pos_priors = priors[pos_inds] | |
self.neg_priors = priors[neg_inds] | |
self.pos_is_gt = gt_flags[pos_inds] | |
self.num_gts = gt_bboxes.shape[0] | |
self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 | |
self.pos_gt_labels = assign_result.labels[pos_inds] | |
box_dim = gt_bboxes.box_dim if isinstance(gt_bboxes, BaseBoxes) else 4 | |
if gt_bboxes.numel() == 0: | |
# hack for index error case | |
assert self.pos_assigned_gt_inds.numel() == 0 | |
self.pos_gt_bboxes = gt_bboxes.view(-1, box_dim) | |
else: | |
if len(gt_bboxes.shape) < 2: | |
gt_bboxes = gt_bboxes.view(-1, box_dim) | |
self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds.long()] | |
def priors(self): | |
"""torch.Tensor: concatenated positive and negative priors""" | |
return cat_boxes([self.pos_priors, self.neg_priors]) | |
def bboxes(self): | |
"""torch.Tensor: concatenated positive and negative boxes""" | |
warnings.warn('DeprecationWarning: bboxes is deprecated, ' | |
'please use "priors" instead') | |
return self.priors | |
def pos_bboxes(self): | |
warnings.warn('DeprecationWarning: pos_bboxes is deprecated, ' | |
'please use "pos_priors" instead') | |
return self.pos_priors | |
def neg_bboxes(self): | |
warnings.warn('DeprecationWarning: neg_bboxes is deprecated, ' | |
'please use "neg_priors" instead') | |
return self.neg_priors | |
def to(self, device): | |
"""Change the device of the data inplace. | |
Example: | |
>>> self = SamplingResult.random() | |
>>> print(f'self = {self.to(None)}') | |
>>> # xdoctest: +REQUIRES(--gpu) | |
>>> print(f'self = {self.to(0)}') | |
""" | |
_dict = self.__dict__ | |
for key, value in _dict.items(): | |
if isinstance(value, (torch.Tensor, BaseBoxes)): | |
_dict[key] = value.to(device) | |
return self | |
def __nice__(self): | |
data = self.info.copy() | |
data['pos_priors'] = data.pop('pos_priors').shape | |
data['neg_priors'] = data.pop('neg_priors').shape | |
parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] | |
body = ' ' + ',\n '.join(parts) | |
return '{\n' + body + '\n}' | |
def info(self): | |
"""Returns a dictionary of info about the object.""" | |
return { | |
'pos_inds': self.pos_inds, | |
'neg_inds': self.neg_inds, | |
'pos_priors': self.pos_priors, | |
'neg_priors': self.neg_priors, | |
'pos_is_gt': self.pos_is_gt, | |
'num_gts': self.num_gts, | |
'pos_assigned_gt_inds': self.pos_assigned_gt_inds, | |
'num_pos': self.num_pos, | |
'num_neg': self.num_neg, | |
'avg_factor': self.avg_factor | |
} | |
def random(cls, rng=None, **kwargs): | |
""" | |
Args: | |
rng (None | int | numpy.random.RandomState): seed or state. | |
kwargs (keyword arguments): | |
- num_preds: Number of predicted boxes. | |
- num_gts: Number of true boxes. | |
- p_ignore (float): Probability of a predicted box assigned to | |
an ignored truth. | |
- p_assigned (float): probability of a predicted box not being | |
assigned. | |
Returns: | |
:obj:`SamplingResult`: Randomly generated sampling result. | |
Example: | |
>>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA | |
>>> self = SamplingResult.random() | |
>>> print(self.__dict__) | |
""" | |
from mmengine.structures import InstanceData | |
from mmdet.models.task_modules.assigners import AssignResult | |
from mmdet.models.task_modules.samplers import RandomSampler | |
rng = ensure_rng(rng) | |
# make probabilistic? | |
num = 32 | |
pos_fraction = 0.5 | |
neg_pos_ub = -1 | |
assign_result = AssignResult.random(rng=rng, **kwargs) | |
# Note we could just compute an assignment | |
priors = random_boxes(assign_result.num_preds, rng=rng) | |
gt_bboxes = random_boxes(assign_result.num_gts, rng=rng) | |
gt_labels = torch.randint( | |
0, 5, (assign_result.num_gts, ), dtype=torch.long) | |
pred_instances = InstanceData() | |
pred_instances.priors = priors | |
gt_instances = InstanceData() | |
gt_instances.bboxes = gt_bboxes | |
gt_instances.labels = gt_labels | |
add_gt_as_proposals = True | |
sampler = RandomSampler( | |
num, | |
pos_fraction, | |
neg_pos_ub=neg_pos_ub, | |
add_gt_as_proposals=add_gt_as_proposals, | |
rng=rng) | |
self = sampler.sample( | |
assign_result=assign_result, | |
pred_instances=pred_instances, | |
gt_instances=gt_instances) | |
return self | |