KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
8.41 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
import torch
from torch import Tensor
from mmdet.structures.bbox import BaseBoxes, cat_boxes
from mmdet.utils import util_mixins
from mmdet.utils.util_random import ensure_rng
from ..assigners import AssignResult
def random_boxes(num=1, scale=1, rng=None):
"""Simple version of ``kwimage.Boxes.random``
Returns:
Tensor: shape (n, 4) in x1, y1, x2, y2 format.
References:
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
Example:
>>> num = 3
>>> scale = 512
>>> rng = 0
>>> boxes = random_boxes(num, scale, rng)
>>> print(boxes)
tensor([[280.9925, 278.9802, 308.6148, 366.1769],
[216.9113, 330.6978, 224.0446, 456.5878],
[405.3632, 196.3221, 493.3953, 270.7942]])
"""
rng = ensure_rng(rng)
tlbr = rng.rand(num, 4).astype(np.float32)
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
tlbr[:, 0] = tl_x * scale
tlbr[:, 1] = tl_y * scale
tlbr[:, 2] = br_x * scale
tlbr[:, 3] = br_y * scale
boxes = torch.from_numpy(tlbr)
return boxes
class SamplingResult(util_mixins.NiceRepr):
"""Bbox sampling result.
Args:
pos_inds (Tensor): Indices of positive samples.
neg_inds (Tensor): Indices of negative samples.
priors (Tensor): The priors can be anchors or points,
or the bboxes predicted by the previous stage.
gt_bboxes (Tensor): Ground truth of bboxes.
assign_result (:obj:`AssignResult`): Assigning results.
gt_flags (Tensor): The Ground truth flags.
avg_factor_with_neg (bool): If True, ``avg_factor`` equal to
the number of total priors; Otherwise, it is the number of
positive priors. Defaults to True.
Example:
>>> # xdoctest: +IGNORE_WANT
>>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA
>>> self = SamplingResult.random(rng=10)
>>> print(f'self = {self}')
self = <SamplingResult({
'neg_inds': tensor([1, 2, 3, 5, 6, 7, 8,
9, 10, 11, 12, 13]),
'neg_priors': torch.Size([12, 4]),
'num_gts': 1,
'num_neg': 12,
'num_pos': 1,
'avg_factor': 13,
'pos_assigned_gt_inds': tensor([0]),
'pos_inds': tensor([0]),
'pos_is_gt': tensor([1], dtype=torch.uint8),
'pos_priors': torch.Size([1, 4])
})>
"""
def __init__(self,
pos_inds: Tensor,
neg_inds: Tensor,
priors: Tensor,
gt_bboxes: Tensor,
assign_result: AssignResult,
gt_flags: Tensor,
avg_factor_with_neg: bool = True) -> None:
self.pos_inds = pos_inds
self.neg_inds = neg_inds
self.num_pos = max(pos_inds.numel(), 1)
self.num_neg = max(neg_inds.numel(), 1)
self.avg_factor_with_neg = avg_factor_with_neg
self.avg_factor = self.num_pos + self.num_neg \
if avg_factor_with_neg else self.num_pos
self.pos_priors = priors[pos_inds]
self.neg_priors = priors[neg_inds]
self.pos_is_gt = gt_flags[pos_inds]
self.num_gts = gt_bboxes.shape[0]
self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
self.pos_gt_labels = assign_result.labels[pos_inds]
box_dim = gt_bboxes.box_dim if isinstance(gt_bboxes, BaseBoxes) else 4
if gt_bboxes.numel() == 0:
# hack for index error case
assert self.pos_assigned_gt_inds.numel() == 0
self.pos_gt_bboxes = gt_bboxes.view(-1, box_dim)
else:
if len(gt_bboxes.shape) < 2:
gt_bboxes = gt_bboxes.view(-1, box_dim)
self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds.long()]
@property
def priors(self):
"""torch.Tensor: concatenated positive and negative priors"""
return cat_boxes([self.pos_priors, self.neg_priors])
@property
def bboxes(self):
"""torch.Tensor: concatenated positive and negative boxes"""
warnings.warn('DeprecationWarning: bboxes is deprecated, '
'please use "priors" instead')
return self.priors
@property
def pos_bboxes(self):
warnings.warn('DeprecationWarning: pos_bboxes is deprecated, '
'please use "pos_priors" instead')
return self.pos_priors
@property
def neg_bboxes(self):
warnings.warn('DeprecationWarning: neg_bboxes is deprecated, '
'please use "neg_priors" instead')
return self.neg_priors
def to(self, device):
"""Change the device of the data inplace.
Example:
>>> self = SamplingResult.random()
>>> print(f'self = {self.to(None)}')
>>> # xdoctest: +REQUIRES(--gpu)
>>> print(f'self = {self.to(0)}')
"""
_dict = self.__dict__
for key, value in _dict.items():
if isinstance(value, (torch.Tensor, BaseBoxes)):
_dict[key] = value.to(device)
return self
def __nice__(self):
data = self.info.copy()
data['pos_priors'] = data.pop('pos_priors').shape
data['neg_priors'] = data.pop('neg_priors').shape
parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())]
body = ' ' + ',\n '.join(parts)
return '{\n' + body + '\n}'
@property
def info(self):
"""Returns a dictionary of info about the object."""
return {
'pos_inds': self.pos_inds,
'neg_inds': self.neg_inds,
'pos_priors': self.pos_priors,
'neg_priors': self.neg_priors,
'pos_is_gt': self.pos_is_gt,
'num_gts': self.num_gts,
'pos_assigned_gt_inds': self.pos_assigned_gt_inds,
'num_pos': self.num_pos,
'num_neg': self.num_neg,
'avg_factor': self.avg_factor
}
@classmethod
def random(cls, rng=None, **kwargs):
"""
Args:
rng (None | int | numpy.random.RandomState): seed or state.
kwargs (keyword arguments):
- num_preds: Number of predicted boxes.
- num_gts: Number of true boxes.
- p_ignore (float): Probability of a predicted box assigned to
an ignored truth.
- p_assigned (float): probability of a predicted box not being
assigned.
Returns:
:obj:`SamplingResult`: Randomly generated sampling result.
Example:
>>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA
>>> self = SamplingResult.random()
>>> print(self.__dict__)
"""
from mmengine.structures import InstanceData
from mmdet.models.task_modules.assigners import AssignResult
from mmdet.models.task_modules.samplers import RandomSampler
rng = ensure_rng(rng)
# make probabilistic?
num = 32
pos_fraction = 0.5
neg_pos_ub = -1
assign_result = AssignResult.random(rng=rng, **kwargs)
# Note we could just compute an assignment
priors = random_boxes(assign_result.num_preds, rng=rng)
gt_bboxes = random_boxes(assign_result.num_gts, rng=rng)
gt_labels = torch.randint(
0, 5, (assign_result.num_gts, ), dtype=torch.long)
pred_instances = InstanceData()
pred_instances.priors = priors
gt_instances = InstanceData()
gt_instances.bboxes = gt_bboxes
gt_instances.labels = gt_labels
add_gt_as_proposals = True
sampler = RandomSampler(
num,
pos_fraction,
neg_pos_ub=neg_pos_ub,
add_gt_as_proposals=add_gt_as_proposals,
rng=rng)
self = sampler.sample(
assign_result=assign_result,
pred_instances=pred_instances,
gt_instances=gt_instances)
return self