RSPrompter / mmpl /models /heads /sam_instance_head.py
KyanChen's picture
Upload 159 files
1c3eb47
raw
history blame
42.7 kB
import copy
import warnings
from typing import List, Optional, Tuple, Union, Dict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models import BaseDetector, TwoStageDetector, StandardRoIHead, SinePositionalEncoding, FCNMaskHead, \
BaseRoIHead
from mmdet.models.task_modules import SamplingResult
from mmdet.models.utils import multi_apply, unpack_gt_instances, empty_instances
from mmdet.structures import SampleList, DetDataSample
from mmdet.structures.bbox import bbox2roi
from mmdet.structures.mask import mask_target
from mmdet.utils import InstanceList, reduce_mean, OptMultiConfig
from mmpl.registry import MODELS, TASK_UTILS
from mmengine.model import BaseModel, BaseModule
from einops import rearrange, repeat
from mmpl.utils import ConfigType, OptConfigType
from mmdet.models.dense_heads import Mask2FormerHead
from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead
@MODELS.register_module()
class SAMInstanceHead(Mask2FormerHead):
def __init__(
self,
num_things_classes: int = 1,
num_stuff_classes: int = 0,
prompt_neck: ConfigType = ...,
with_iou: bool = False,
with_multiscale: bool = False,
with_sincos: bool = False,
with_res_imgfeat: bool = False,
loss_cls: ConfigType = dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=2.0,
reduction='mean',
class_weight=[1.0] * 133 + [0.1]),
loss_mask: ConfigType = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=5.0),
loss_dice: ConfigType = dict(
type='DiceLoss',
use_sigmoid=True,
activate=True,
reduction='mean',
naive_dice=True,
eps=1.0,
loss_weight=5.0),
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='ReLU', inplace=True),
**kwargs
):
super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)
self.num_things_classes = num_things_classes
self.num_stuff_classes = num_stuff_classes
self.num_classes = self.num_things_classes + self.num_stuff_classes
self.with_iou = with_iou
self.with_multiscale = with_multiscale
self.with_sincos = with_sincos
self.with_res_imgfeat = with_res_imgfeat
# self.num_transformer_feat_level = num_transformer_feat_level
# self.num_heads = transformer_decoder.layer_cfg.cross_attn_cfg.num_heads
# self.num_transformer_decoder_layers = transformer_decoder.num_layers
# assert pixel_decoder.encoder.layer_cfg. \
# self_attn_cfg.num_levels == num_transformer_feat_level
# pixel_decoder_ = copy.deepcopy(pixel_decoder)
# pixel_decoder_.update(
# in_channels=in_channels,
# feat_channels=feat_channels,
# out_channels=out_channels)
# self.pixel_decoder = MODELS.build(pixel_decoder_)
# self.transformer_decoder = Mask2FormerTransformerDecoder(
# **transformer_decoder)
# self.decoder_embed_dims = self.transformer_decoder.embed_dims
#
# self.decoder_input_projs = ModuleList()
# # from low resolution to high resolution
# for _ in range(num_transformer_feat_level):
# if (self.decoder_embed_dims != feat_channels
# or enforce_decoder_input_project):
# self.decoder_input_projs.append(
# Conv2d(
# feat_channels, self.decoder_embed_dims, kernel_size=1))
# else:
# self.decoder_input_projs.append(nn.Identity())
# self.decoder_positional_encoding = SinePositionalEncoding(
# **positional_encoding)
# self.query_embed = nn.Embedding(self.num_queries, feat_channels)
# self.query_feat = nn.Embedding(self.num_queries, feat_channels)
# # from low resolution to high resolution
# self.level_embed = nn.Embedding(self.num_transformer_feat_level,
# feat_channels)
#
# self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
# self.mask_embed = nn.Sequential(
# nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
# nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
# nn.Linear(feat_channels, out_channels))
self.prompt_neck = MODELS.build(prompt_neck)
self.num_queries = self.prompt_neck.num_queries
self.per_query_point = self.prompt_neck.per_query_point
out_channels = self.prompt_neck.out_channels
self.cls_embed = nn.Sequential(
nn.Linear(out_channels, out_channels // 2),
nn.ReLU(inplace=True),
nn.Linear(out_channels // 2, self.num_classes + 1)
)
if self.with_sincos:
self.point_emb = nn.Sequential(
nn.Linear(out_channels, out_channels),
nn.ReLU(inplace=True),
nn.Linear(out_channels, out_channels),
nn.ReLU(inplace=True),
nn.Linear(out_channels, self.per_query_point * out_channels*2)
)
else:
self.point_emb = nn.Sequential(
nn.Linear(out_channels, out_channels),
nn.ReLU(inplace=True),
nn.Linear(out_channels, out_channels),
nn.ReLU(inplace=True),
nn.Linear(out_channels, self.per_query_point * out_channels)
)
if self.with_res_imgfeat:
self.res_imgfeat = nn.Sequential(
nn.UpsamplingBilinear2d(scale_factor=2),
ConvModule(
out_channels,
out_channels,
kernel_size=3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg
)
)
self.test_cfg = test_cfg
self.train_cfg = train_cfg
if train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
self.num_points = self.train_cfg.get('num_points', 12544)
self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
self.importance_sample_ratio = self.train_cfg.get(
'importance_sample_ratio', 0.75)
self.class_weight = loss_cls.class_weight
self.loss_cls = MODELS.build(loss_cls)
self.loss_mask = MODELS.build(loss_mask)
self.loss_dice = MODELS.build(loss_dice)
def forward(self, x: List[Tensor],
batch_data_samples: SampleList,
sam
) -> Tuple[List[Tensor]]:
"""Forward function.
Args:
x (list[Tensor]): Multi scale Features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
tuple[list[Tensor]]: A tuple contains two elements.
- cls_pred_list (list[Tensor)]: Classification logits \
for each decoder layer. Each is a 3D-tensor with shape \
(batch_size, num_queries, cls_out_channels). \
Note `cls_out_channels` should includes background.
- mask_pred_list (list[Tensor]): Mask logits for each \
decoder layer. Each with shape (batch_size, num_queries, \
h, w).
"""
batch_img_metas = [
data_sample.metainfo for data_sample in batch_data_samples
]
batch_size = len(batch_img_metas)
decoder_out, query_feat_list, res_img_feat = self.prompt_neck(x)
if self.with_multiscale:
cls_pred_list = [self.cls_embed(query_feat) for query_feat in query_feat_list]
else:
# shape (batch_size, num_queries, c)
cls_pred_list = [self.cls_embed(decoder_out)]
# shape (batch_size, num_queries, c)
point_emb = self.point_emb(decoder_out)
# shape (batch_size, num_queries, per_query_point, c)
point_emb = point_emb.view(batch_size, self.num_queries, self.per_query_point, -1)
img_seg_feat = x[0]
point_emb = rearrange(point_emb, 'b n p c -> (b n) p c')
if self.with_sincos:
point_emb = torch.sin(point_emb[..., ::2]) + point_emb[..., 1::2]
nomask_dense_embeddings = sam.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
point_emb.shape[0], -1, *img_seg_feat.shape[-2:]
)
img_embeddings = torch.repeat_interleave(img_seg_feat, self.num_queries, dim=0)
img_pe = sam.prompt_encoder.get_dense_pe()
img_pe = repeat(img_pe, 'b c h w -> (b n) c h w', n=img_embeddings.shape[0])
if self.with_res_imgfeat:
res_img_feat = self.res_imgfeat(res_img_feat)
res_img_feat = torch.repeat_interleave(res_img_feat, self.num_queries, dim=0)
else:
res_img_feat = None
low_res_masks, iou_predictions = sam.mask_decoder.forward_batch(
image_embeddings=img_embeddings,
image_pe=img_pe,
sparse_prompt_embeddings=point_emb,
dense_prompt_embeddings=nomask_dense_embeddings,
multimask_output=False,
res_img_feat=res_img_feat,
)
mask_pred = rearrange(low_res_masks.squeeze(1), '(b n) h w -> b n h w', b=batch_size)
# optional
# if self.with_iou:
# iou_predictions = iou_predictions.view(batch_size, self.num_queries, -1)
# cls_pred = cls_pred * iou_predictions
if self.with_multiscale:
mask_pred_list = [mask_pred] * len(cls_pred_list)
else:
mask_pred_list = [mask_pred]
return cls_pred_list, mask_pred_list
def predict(self, x: Tuple[Tensor],
batch_data_samples: SampleList,
sam
) -> Tuple[Tensor]:
"""Test without augmentaton.
Args:
x (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
tuple[Tensor]: A tuple contains two tensors.
- mask_cls_results (Tensor): Mask classification logits,\
shape (batch_size, num_queries, cls_out_channels).
Note `cls_out_channels` should includes background.
- mask_pred_results (Tensor): Mask logits, shape \
(batch_size, num_queries, h, w).
"""
batch_img_metas = [
data_sample.metainfo for data_sample in batch_data_samples
]
all_cls_scores, all_mask_preds = self(x, batch_data_samples, sam)
mask_cls_results = all_cls_scores[-1]
mask_pred_results = all_mask_preds[-1]
# upsample masks
img_shape = batch_img_metas[0]['batch_input_shape']
mask_pred_results = F.interpolate(
mask_pred_results,
size=(img_shape[0], img_shape[1]),
mode='bilinear',
align_corners=False)
return mask_cls_results, mask_pred_results
def loss(
self,
x: Tuple[Tensor],
batch_data_samples: SampleList,
sam,
) -> Dict[str, Tensor]:
"""Perform forward propagation and loss calculation of the panoptic
head on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the upstream
network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
batch_img_metas = []
batch_gt_instances = []
batch_gt_semantic_segs = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
if 'gt_sem_seg' in data_sample:
batch_gt_semantic_segs.append(data_sample.gt_sem_seg)
else:
batch_gt_semantic_segs.append(None)
# forward
all_cls_scores, all_mask_preds = self(x, batch_data_samples, sam)
# preprocess ground truth
batch_gt_instances = self.preprocess_gt(batch_gt_instances,
batch_gt_semantic_segs)
# loss
losses = self.loss_by_feat(all_cls_scores, all_mask_preds,
batch_gt_instances, batch_img_metas)
return losses
@MODELS.register_module()
class SAMAnchorInstanceHead(TwoStageDetector):
def __init__(
self,
sam_head=True,
neck: OptConfigType = None,
rpn_head: OptConfigType = None,
roi_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
**kwargs
):
super(TwoStageDetector, self).__init__()
self.neck = MODELS.build(neck)
self.sam_head = sam_head
if rpn_head is not None:
rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None
rpn_head_ = rpn_head.copy()
rpn_head_.update(train_cfg=rpn_train_cfg, test_cfg=test_cfg.rpn)
rpn_head_num_classes = rpn_head_.get('num_classes', None)
if rpn_head_num_classes is None:
rpn_head_.update(num_classes=1)
else:
if rpn_head_num_classes != 1:
warnings.warn(
'The `num_classes` should be 1 in RPN, but get '
f'{rpn_head_num_classes}, please set '
'rpn_head.num_classes = 1 in your config file.')
rpn_head_.update(num_classes=1)
self.rpn_head = MODELS.build(rpn_head_)
if roi_head is not None:
# update train and test cfg here for now
# TODO: refactor assigner & sampler
rcnn_train_cfg = train_cfg.rcnn if train_cfg is not None else None
roi_head.update(train_cfg=rcnn_train_cfg)
roi_head.update(test_cfg=test_cfg.rcnn)
self.roi_head = MODELS.build(roi_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
def extract_feat(self, x):
x = self.neck(x)
return x
def loss(self,
batch_inputs,
batch_data_samples: SampleList,
sam
) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict: A dictionary of loss components
"""
x = self.extract_feat(batch_inputs)
img_seg_feat = batch_inputs[0]
losses = dict()
# RPN forward and loss
if self.with_rpn:
proposal_cfg = self.train_cfg.get('rpn_proposal',
self.test_cfg.rpn)
rpn_data_samples = copy.deepcopy(batch_data_samples)
# set cat_id of gt_labels to 0 in RPN
for data_sample in rpn_data_samples:
data_sample.gt_instances.labels = \
torch.zeros_like(data_sample.gt_instances.labels)
rpn_losses, rpn_results_list = self.rpn_head.loss_and_predict(
x, rpn_data_samples, proposal_cfg=proposal_cfg)
# avoid get same name with roi_head loss
keys = rpn_losses.keys()
for key in list(keys):
if 'loss' in key and 'rpn' not in key:
rpn_losses[f'rpn_{key}'] = rpn_losses.pop(key)
losses.update(rpn_losses)
else:
assert batch_data_samples[0].get('proposals', None) is not None
# use pre-defined proposals in InstanceData for the second stage
# to extract ROI features.
rpn_results_list = [
data_sample.proposals for data_sample in batch_data_samples
]
if self.sam_head:
roi_losses = self.roi_head.loss(x, rpn_results_list,
batch_data_samples,
sam, img_seg_feat
)
else:
roi_losses = self.roi_head.loss(x, rpn_results_list,
batch_data_samples
)
losses.update(roi_losses)
return losses
def predict(self,
batch_inputs: Tensor,
batch_data_samples: SampleList,
sam,
rescale: bool = True
) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
batch_inputs (Tensor): Inputs with shape (N, C, H, W).
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool): Whether to rescale the results.
Defaults to True.
Returns:
list[:obj:`DetDataSample`]: Return the detection results of the
input images. The returns value is DetDataSample,
which usually contain 'pred_instances'. And the
``pred_instances`` usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
assert self.with_bbox, 'Bbox head must be implemented.'
x = self.extract_feat(batch_inputs)
img_seg_feat = batch_inputs[0]
# If there are no pre-defined proposals, use RPN to get proposals
if batch_data_samples[0].get('proposals', None) is None:
rpn_results_list = self.rpn_head.predict(
x, batch_data_samples, rescale=False)
else:
rpn_results_list = [
data_sample.proposals for data_sample in batch_data_samples
]
if self.sam_head:
results_list = self.roi_head.predict(
x, rpn_results_list, batch_data_samples, sam, img_seg_feat, rescale=rescale)
else:
results_list = self.roi_head.predict(
x, rpn_results_list, batch_data_samples, rescale=rescale)
batch_data_samples = self.add_pred_to_datasample(
batch_data_samples, results_list)
return batch_data_samples
@MODELS.register_module()
class SAMAnchorPromptRoIHead(StandardRoIHead):
def __init__(
self,
positional_encoding=dict(num_feats=128, normalize=True),
*args,
**kwargs
):
super(StandardRoIHead, self).__init__(*args, **kwargs)
self.generator_pe = SinePositionalEncoding(**positional_encoding)
def _mask_forward(self,
x: Tuple[Tensor],
rois: Tensor = None,
pos_inds: Optional[Tensor] = None,
bbox_feats: Optional[Tensor] = None,
sam=None, img_seg_feat=None
) -> dict:
"""Mask head forward function used in both training and testing.
Args:
x (tuple[Tensor]): Tuple of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
pos_inds (Tensor, optional): Indices of positive samples.
Defaults to None.
bbox_feats (Tensor): Extract bbox RoI features. Defaults to None.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
- `mask_feats` (Tensor): Extract mask RoI features.
"""
assert ((rois is not None) ^
(pos_inds is not None and bbox_feats is not None))
if rois is not None:
mask_feats = self.mask_roi_extractor(
x[:self.mask_roi_extractor.num_inputs], rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
else:
assert bbox_feats is not None
mask_feats = bbox_feats[pos_inds]
mask_preds = self.mask_head(mask_feats, sam, img_seg_feat, img_flag_ids=rois[:, 0])
mask_results = dict(mask_preds=mask_preds[0], mask_iou=mask_preds[1], mask_feats=mask_feats)
return mask_results
def mask_loss(self, x: Tuple[Tensor],
sampling_results: List[SamplingResult], bbox_feats: Tensor,
batch_gt_instances: InstanceList,
sam, img_seg_feat
) -> dict:
"""Perform forward propagation and loss calculation of the mask head on
the features of the upstream network.
Args:
x (tuple[Tensor]): Tuple of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
bbox_feats (Tensor): Extract bbox RoI features.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
- `mask_feats` (Tensor): Extract mask RoI features.
- `mask_targets` (Tensor): Mask target of each positive\
proposals in the image.
- `loss_mask` (dict): A dictionary of mask loss components.
"""
if not self.share_roi_extractor:
pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
mask_results = self._mask_forward(
x, pos_rois, sam=sam, img_seg_feat=img_seg_feat)
else:
pos_inds = []
device = bbox_feats.device
for res in sampling_results:
pos_inds.append(
torch.ones(
res.pos_priors.shape[0],
device=device,
dtype=torch.uint8))
pos_inds.append(
torch.zeros(
res.neg_priors.shape[0],
device=device,
dtype=torch.uint8))
pos_inds = torch.cat(pos_inds)
mask_results = self._mask_forward(
x, pos_inds=pos_inds, bbox_feats=bbox_feats)
mask_loss_and_target = self.mask_head.loss_and_target(
mask_preds=mask_results['mask_preds'],
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=self.train_cfg)
mask_results.update(loss_mask=mask_loss_and_target['loss_mask'])
return mask_results
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: List[DetDataSample],
sam, img_seg_feat
) -> dict:
"""Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.
Args:
x (tuple[Tensor]): List of multi-level img features.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components
"""
x = list(x)
bs, _, h, w = x[-1].shape
mask_pe = torch.zeros((bs, h, w), device=x[0].device, dtype=torch.bool)
img_feats_pe = self.generator_pe(mask_pe)
for i in range(len(x)):
x[i] = x[i] + torch.nn.functional.interpolate(img_feats_pe, size=x[i].shape[-2:], mode='bilinear')
assert len(rpn_results_list) == len(batch_data_samples)
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, _ = outputs
# assign gts and sample proposals
num_imgs = len(batch_data_samples)
sampling_results = []
for i in range(num_imgs):
# rename rpn_results.bboxes to rpn_results.priors
rpn_results = rpn_results_list[i]
rpn_results.priors = rpn_results.pop('bboxes')
assign_result = self.bbox_assigner.assign(
rpn_results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = self.bbox_sampler.sample(
assign_result,
rpn_results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
losses = dict()
# bbox head loss
if self.with_bbox:
bbox_results = self.bbox_loss(x, sampling_results)
losses.update(bbox_results['loss_bbox'])
# mask head forward and loss
if self.with_mask:
mask_results = self.mask_loss(x, sampling_results,
bbox_results['bbox_feats'],
batch_gt_instances,
sam, img_seg_feat
)
losses.update(mask_results['loss_mask'])
return losses
def predict_mask(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
results_list: InstanceList,
rescale: bool = False,
sam=None, img_seg_feat=None
) -> InstanceList:
"""Perform forward propagation of the mask head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
# don't need to consider aug_test.
bboxes = [res.bboxes for res in results_list]
mask_rois = bbox2roi(bboxes)
if mask_rois.shape[0] == 0:
results_list = empty_instances(
batch_img_metas,
mask_rois.device,
task_type='mask',
instance_results=results_list,
mask_thr_binary=self.test_cfg.mask_thr_binary)
return results_list
mask_results = self._mask_forward(x, mask_rois, sam=sam, img_seg_feat=img_seg_feat)
mask_preds = mask_results['mask_preds']
# split batch mask prediction back to each image
num_mask_rois_per_img = [len(res) for res in results_list]
mask_preds = mask_preds.split(num_mask_rois_per_img, 0)
# TODO: Handle the case where rescale is false
results_list = self.mask_head.predict_by_feat(
mask_preds=mask_preds,
results_list=results_list,
batch_img_metas=batch_img_metas,
rcnn_test_cfg=self.test_cfg,
rescale=rescale)
return results_list
def predict(self,
x: Tuple[Tensor],
rpn_results_list: InstanceList,
batch_data_samples: SampleList,
sam, img_seg_feat,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the roi head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Features from upstream network. Each
has shape (N, C, H, W).
rpn_results_list (list[:obj:`InstanceData`]): list of region
proposals.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool): Whether to rescale the results to
the original image. Defaults to True.
Returns:
list[obj:`InstanceData`]: Detection results of each image.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
x = list(x)
bs, _, h, w = x[-1].shape
mask_pe = torch.zeros((bs, h, w), device=x[0].device, dtype=torch.bool)
img_feats_pe = self.generator_pe(mask_pe)
for i in range(len(x)):
x[i] = x[i] + torch.nn.functional.interpolate(img_feats_pe, size=x[i].shape[-2:], mode='bilinear')
assert self.with_bbox, 'Bbox head must be implemented.'
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
# TODO: nms_op in mmcv need be enhanced, the bbox result may get
# difference when not rescale in bbox_head
# If it has the mask branch, the bbox branch does not need
# to be scaled to the original image scale, because the mask
# branch will scale both bbox and mask at the same time.
bbox_rescale = rescale if not self.with_mask else False
results_list = self.predict_bbox(
x,
batch_img_metas,
rpn_results_list,
rcnn_test_cfg=self.test_cfg,
rescale=bbox_rescale)
if self.with_mask:
results_list = self.predict_mask(
x, batch_img_metas, results_list, rescale=rescale, sam=sam, img_seg_feat=img_seg_feat)
return results_list
@MODELS.register_module()
class SAMPromptMaskHead(FCNMaskHead):
def __init__(self,
per_query_point: int = 5,
with_sincos: bool = True,
class_agnostic: bool = False,
loss_mask: ConfigType = dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
*args,
**kwargs
) -> None:
super(BaseModule, self).__init__()
self.per_query_point = per_query_point
self.with_sincos = with_sincos
self.class_agnostic = class_agnostic
self.loss_mask = MODELS.build(loss_mask)
if with_sincos:
sincos = 2
else:
sincos = 1
self.point_emb = nn.Sequential(
nn.Conv2d(256, 256, 3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Flatten(),
nn.Linear(7*7*256, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 256*sincos*per_query_point)
)
def forward(self, x, sam, img_seg_feat, img_flag_ids) -> Tensor:
batch_size = x.shape[0]
point_emb = self.point_emb(x)
point_emb = point_emb.view(batch_size, self.per_query_point, -1)
if self.with_sincos:
point_emb = torch.sin(point_emb[..., ::2]) + point_emb[..., 1::2]
nomask_dense_embeddings = sam.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
point_emb.shape[0], -1, *img_seg_feat.shape[-2:]
)
img_flag_ids = torch.bincount(img_flag_ids.long())
padding = torch.zeros((len(img_seg_feat)-len(img_flag_ids),), device=img_flag_ids.device, dtype=img_flag_ids.dtype)
img_flag_ids = torch.cat([img_flag_ids, padding])
img_embeddings = torch.repeat_interleave(img_seg_feat, img_flag_ids, dim=0)
img_pe = sam.prompt_encoder.get_dense_pe()
img_pe = repeat(img_pe, 'b c h w -> (b n) c h w', n=img_embeddings.shape[0])
res_img_feat = None
low_res_masks, iou_predictions = sam.mask_decoder.forward_batch(
image_embeddings=img_embeddings,
image_pe=img_pe,
sparse_prompt_embeddings=point_emb,
dense_prompt_embeddings=nomask_dense_embeddings,
multimask_output=False,
res_img_feat=res_img_feat,
)
mask_pred = low_res_masks.squeeze(1)
iou_predictions = iou_predictions.squeeze(1)
return mask_pred, iou_predictions
def get_targets(self, sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> Tensor:
"""Calculate the ground truth for all samples in a batch according to
the sampling_results.
Args:
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
Tensor: Mask target of each positive proposals in the image.
"""
pos_proposals = [res.pos_priors for res in sampling_results]
pos_assigned_gt_inds = [
res.pos_assigned_gt_inds for res in sampling_results
]
gt_masks = [res.masks for res in batch_gt_instances]
mask_targets_list = []
mask_size = (rcnn_train_cfg.mask_size,) * 2
device = pos_proposals[0].device
for pos_gt_inds, gt_mask in zip(pos_assigned_gt_inds, gt_masks):
if len(pos_gt_inds) == 0:
mask_targets = torch.zeros((0,) + mask_size, device=device, dytpe=torch.float32)
else:
mask_targets = gt_mask[pos_gt_inds.cpu()].to_tensor(dtype=torch.float32, device=device)
mask_targets_list.append(mask_targets)
mask_targets = torch.cat(mask_targets_list)
return mask_targets
def loss_and_target(self, mask_preds: Tensor,
sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> dict:
"""Calculate the loss based on the features extracted by the mask head.
Args:
mask_preds (Tensor): Predicted foreground masks, has shape
(num_pos, num_classes, h, w).
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss and targets components.
"""
mask_targets = self.get_targets(
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=rcnn_train_cfg)
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
mask_preds = torch.nn.functional.interpolate(
mask_preds.unsqueeze(1), size=mask_targets.shape[-2:], mode='bilinear', align_corners=False)
loss = dict()
if mask_preds.size(0) == 0:
loss_mask = mask_preds.sum()
else:
if self.class_agnostic:
loss_mask = self.loss_mask(mask_preds, mask_targets,
torch.zeros_like(pos_labels))
else:
loss_mask = self.loss_mask(mask_preds, mask_targets,
pos_labels)
loss['loss_mask'] = loss_mask
# TODO: which algorithm requires mask_targets?
return dict(loss_mask=loss, mask_targets=mask_targets)
def _predict_by_feat_single(self,
mask_preds: Tensor,
bboxes: Tensor,
labels: Tensor,
img_meta: dict,
rcnn_test_cfg: ConfigDict,
rescale: bool = False,
activate_map: bool = False) -> Tensor:
"""Get segmentation masks from mask_preds and bboxes.
Args:
mask_preds (Tensor): Predicted foreground masks, has shape
(n, num_classes, h, w).
bboxes (Tensor): Predicted bboxes, has shape (n, 4)
labels (Tensor): Labels of bboxes, has shape (n, )
img_meta (dict): image information.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
activate_map (book): Whether get results with augmentations test.
If True, the `mask_preds` will not process with sigmoid.
Defaults to False.
Returns:
Tensor: Encoded masks, has shape (n, img_w, img_h)
Example:
>>> from mmengine.config import Config
>>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import * # NOQA
>>> N = 7 # N = number of extracted ROIs
>>> C, H, W = 11, 32, 32
>>> # Create example instance of FCN Mask Head.
>>> self = FCNMaskHead(num_classes=C, num_convs=0)
>>> inputs = torch.rand(N, self.in_channels, H, W)
>>> mask_preds = self.forward(inputs)
>>> # Each input is associated with some bounding box
>>> bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N)
>>> labels = torch.randint(0, C, size=(N,))
>>> rcnn_test_cfg = Config({'mask_thr_binary': 0, })
>>> ori_shape = (H * 4, W * 4)
>>> scale_factor = (1, 1)
>>> rescale = False
>>> img_meta = {'scale_factor': scale_factor,
... 'ori_shape': ori_shape}
>>> # Encoded masks are a list for each category.
>>> encoded_masks = self._get_seg_masks_single(
... mask_preds, bboxes, labels,
... img_meta, rcnn_test_cfg, rescale)
>>> assert encoded_masks.size()[0] == N
>>> assert encoded_masks.size()[1:] == ori_shape
"""
scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat(
(1, 2))
img_h, img_w = img_meta['ori_shape'][:2]
device = bboxes.device
if not activate_map:
mask_preds = mask_preds.sigmoid()
else:
# In AugTest, has been activated before
mask_preds = bboxes.new_tensor(mask_preds)
if rescale: # in-placed rescale the bboxes
bboxes /= scale_factor
else:
w_scale, h_scale = scale_factor[0, 0], scale_factor[0, 1]
img_h = np.round(img_h * h_scale.item()).astype(np.int32)
img_w = np.round(img_w * w_scale.item()).astype(np.int32)
threshold = rcnn_test_cfg.mask_thr_binary
im_mask = torch.nn.functional.interpolate(
mask_preds.unsqueeze(1), size=(img_h, img_w), mode='bilinear', align_corners=False).squeeze(1)
if threshold >= 0:
im_mask = im_mask >= threshold
else:
# for visualization and debugging
im_mask = (im_mask * 255).to(dtype=torch.uint8)
return im_mask