RSPrompter / mmpl /models /pler /seg_sam_anchor_pler.py
KyanChen's picture
Upload 159 files
1c3eb47
raw
history blame
3.52 kB
import torch
from mmengine.structures import InstanceData
from typing import List, Any
from mmpl.registry import MODELS
from mmseg.utils import SampleList
from .base_pler import BasePLer
import torch.nn.functional as F
from modules.sam import sam_model_registry
@MODELS.register_module()
class SegSAMAnchorPLer(BasePLer):
def __init__(self,
backbone,
neck=None,
panoptic_head=None,
need_train_names=None,
train_cfg=None,
test_cfg=None,
*args, **kwargs):
super().__init__(*args, **kwargs)
self.save_hyperparameters()
self.need_train_names = need_train_names
backbone_type = backbone.pop('type')
self.backbone = sam_model_registry[backbone_type](**backbone)
if neck is not None:
self.neck = MODELS.build(neck)
self.panoptic_head = MODELS.build(panoptic_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
def setup(self, stage: str) -> None:
super().setup(stage)
if self.need_train_names is not None:
self._set_grad(self.need_train_names, noneed_train_names=[])
def init_weights(self):
import ipdb; ipdb.set_trace()
pass
def train(self, mode=True):
if self.need_train_names is not None:
return self._set_train_module(mode, self.need_train_names)
else:
super().train(mode)
return self
@torch.no_grad()
def extract_feat(self, batch_inputs):
feat, inter_features = self.backbone.image_encoder(batch_inputs)
return feat, inter_features
def validation_step(self, batch, batch_idx):
data = self.data_preprocessor(batch, False)
batch_inputs = data['inputs']
batch_data_samples = data['data_samples']
x = self.extract_feat(batch_inputs)
# x = (
# torch.rand(2, 256, 64, 64).to(self.device), [torch.rand(2, 64, 64, 768).to(self.device) for _ in range(12)])
results = self.panoptic_head.predict(
x, batch_data_samples, self.backbone)
self.val_evaluator.update(batch, results)
def training_step(self, batch, batch_idx):
data = self.data_preprocessor(batch, True)
batch_inputs = data['inputs']
batch_data_samples = data['data_samples']
x = self.extract_feat(batch_inputs)
# x = (torch.rand(2, 256, 64, 64).to(self.device), [torch.rand(2, 64, 64, 768).to(self.device) for _ in range(12)])
losses = self.panoptic_head.loss(x, batch_data_samples, self.backbone)
parsed_losses, log_vars = self.parse_losses(losses)
log_vars = {f'train_{k}': v for k, v in log_vars.items()}
log_vars['loss'] = parsed_losses
self.log_dict(log_vars, prog_bar=True)
return log_vars
def on_before_optimizer_step(self, optimizer) -> None:
self.log_grad(module=self.panoptic_head)
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any:
data = self.data_preprocessor(batch, False)
batch_inputs = data['inputs']
batch_data_samples = data['data_samples']
x = self.extract_feat(batch_inputs)
# x = (
# torch.rand(2, 256, 64, 64).to(self.device), [torch.rand(2, 64, 64, 768).to(self.device) for _ in range(12)])
results = self.panoptic_head.predict(
x, batch_data_samples, self.backbone)
return results