Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from copy import deepcopy | |
from typing import Sequence | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn.bricks.transformer import FFN | |
from mmengine.model import BaseModule, ModuleList | |
from mmengine.model.weight_init import trunc_normal_ | |
from mmpretrain.registry import MODELS | |
from ..utils import (MultiheadAttention, build_norm_layer, resize_pos_embed, | |
to_2tuple) | |
from .base_backbone import BaseBackbone | |
class T2TTransformerLayer(BaseModule): | |
"""Transformer Layer for T2T_ViT. | |
Comparing with :obj:`TransformerEncoderLayer` in ViT, it supports | |
different ``input_dims`` and ``embed_dims``. | |
Args: | |
embed_dims (int): The feature dimension. | |
num_heads (int): Parallel attention heads. | |
feedforward_channels (int): The hidden dimension for FFNs | |
input_dims (int, optional): The input token dimension. | |
Defaults to None. | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
attn_drop_rate (float): The drop out rate for attention output weights. | |
Defaults to 0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Defaults to 2. | |
qkv_bias (bool): enable bias for qkv if True. Defaults to True. | |
qk_scale (float, optional): Override default qk scale of | |
``(input_dims // num_heads) ** -0.5`` if set. Defaults to None. | |
act_cfg (dict): The activation config for FFNs. | |
Defaluts to ``dict(type='GELU')``. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
Notes: | |
In general, ``qk_scale`` should be ``head_dims ** -0.5``, i.e. | |
``(embed_dims // num_heads) ** -0.5``. However, in the official | |
code, it uses ``(input_dims // num_heads) ** -0.5``, so here we | |
keep the same with the official implementation. | |
""" | |
def __init__(self, | |
embed_dims, | |
num_heads, | |
feedforward_channels, | |
input_dims=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
num_fcs=2, | |
qkv_bias=False, | |
qk_scale=None, | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super(T2TTransformerLayer, self).__init__(init_cfg=init_cfg) | |
self.v_shortcut = True if input_dims is not None else False | |
input_dims = input_dims or embed_dims | |
self.ln1 = build_norm_layer(norm_cfg, input_dims) | |
self.attn = MultiheadAttention( | |
input_dims=input_dims, | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
attn_drop=attn_drop_rate, | |
proj_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale or (input_dims // num_heads)**-0.5, | |
v_shortcut=self.v_shortcut) | |
self.ln2 = build_norm_layer(norm_cfg, embed_dims) | |
self.ffn = FFN( | |
embed_dims=embed_dims, | |
feedforward_channels=feedforward_channels, | |
num_fcs=num_fcs, | |
ffn_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
act_cfg=act_cfg) | |
def forward(self, x): | |
if self.v_shortcut: | |
x = self.attn(self.ln1(x)) | |
else: | |
x = x + self.attn(self.ln1(x)) | |
x = self.ffn(self.ln2(x), identity=x) | |
return x | |
class T2TModule(BaseModule): | |
"""Tokens-to-Token module. | |
"Tokens-to-Token module" (T2T Module) can model the local structure | |
information of images and reduce the length of tokens progressively. | |
Args: | |
img_size (int): Input image size | |
in_channels (int): Number of input channels | |
embed_dims (int): Embedding dimension | |
token_dims (int): Tokens dimension in T2TModuleAttention. | |
use_performer (bool): If True, use Performer version self-attention to | |
adopt regular self-attention. Defaults to False. | |
init_cfg (dict, optional): The extra config for initialization. | |
Default: None. | |
Notes: | |
Usually, ``token_dim`` is set as a small value (32 or 64) to reduce | |
MACs | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
in_channels=3, | |
embed_dims=384, | |
token_dims=64, | |
use_performer=False, | |
init_cfg=None, | |
): | |
super(T2TModule, self).__init__(init_cfg) | |
self.embed_dims = embed_dims | |
self.soft_split0 = nn.Unfold( | |
kernel_size=(7, 7), stride=(4, 4), padding=(2, 2)) | |
self.soft_split1 = nn.Unfold( | |
kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) | |
self.soft_split2 = nn.Unfold( | |
kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) | |
if not use_performer: | |
self.attention1 = T2TTransformerLayer( | |
input_dims=in_channels * 7 * 7, | |
embed_dims=token_dims, | |
num_heads=1, | |
feedforward_channels=token_dims) | |
self.attention2 = T2TTransformerLayer( | |
input_dims=token_dims * 3 * 3, | |
embed_dims=token_dims, | |
num_heads=1, | |
feedforward_channels=token_dims) | |
self.project = nn.Linear(token_dims * 3 * 3, embed_dims) | |
else: | |
raise NotImplementedError("Performer hasn't been implemented.") | |
# there are 3 soft split, stride are 4,2,2 separately | |
out_side = img_size // (4 * 2 * 2) | |
self.init_out_size = [out_side, out_side] | |
self.num_patches = out_side**2 | |
def _get_unfold_size(unfold: nn.Unfold, input_size): | |
h, w = input_size | |
kernel_size = to_2tuple(unfold.kernel_size) | |
stride = to_2tuple(unfold.stride) | |
padding = to_2tuple(unfold.padding) | |
dilation = to_2tuple(unfold.dilation) | |
h_out = (h + 2 * padding[0] - dilation[0] * | |
(kernel_size[0] - 1) - 1) // stride[0] + 1 | |
w_out = (w + 2 * padding[1] - dilation[1] * | |
(kernel_size[1] - 1) - 1) // stride[1] + 1 | |
return (h_out, w_out) | |
def forward(self, x): | |
# step0: soft split | |
hw_shape = self._get_unfold_size(self.soft_split0, x.shape[2:]) | |
x = self.soft_split0(x).transpose(1, 2) | |
for step in [1, 2]: | |
# re-structurization/reconstruction | |
attn = getattr(self, f'attention{step}') | |
x = attn(x).transpose(1, 2) | |
B, C, _ = x.shape | |
x = x.reshape(B, C, hw_shape[0], hw_shape[1]) | |
# soft split | |
soft_split = getattr(self, f'soft_split{step}') | |
hw_shape = self._get_unfold_size(soft_split, hw_shape) | |
x = soft_split(x).transpose(1, 2) | |
# final tokens | |
x = self.project(x) | |
return x, hw_shape | |
def get_sinusoid_encoding(n_position, embed_dims): | |
"""Generate sinusoid encoding table. | |
Sinusoid encoding is a kind of relative position encoding method came from | |
`Attention Is All You Need<https://arxiv.org/abs/1706.03762>`_. | |
Args: | |
n_position (int): The length of the input token. | |
embed_dims (int): The position embedding dimension. | |
Returns: | |
:obj:`torch.FloatTensor`: The sinusoid encoding table. | |
""" | |
def get_position_angle_vec(position): | |
return [ | |
position / np.power(10000, 2 * (i // 2) / embed_dims) | |
for i in range(embed_dims) | |
] | |
sinusoid_table = np.array( | |
[get_position_angle_vec(pos) for pos in range(n_position)]) | |
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i | |
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 | |
return torch.FloatTensor(sinusoid_table).unsqueeze(0) | |
class T2T_ViT(BaseBackbone): | |
"""Tokens-to-Token Vision Transformer (T2T-ViT) | |
A PyTorch implementation of `Tokens-to-Token ViT: Training Vision | |
Transformers from Scratch on ImageNet <https://arxiv.org/abs/2101.11986>`_ | |
Args: | |
img_size (int | tuple): The expected input image shape. Because we | |
support dynamic input shape, just set the argument to the most | |
common input image shape. Defaults to 224. | |
in_channels (int): Number of input channels. | |
embed_dims (int): Embedding dimension. | |
num_layers (int): Num of transformer layers in encoder. | |
Defaults to 14. | |
out_indices (Sequence | int): Output from which stages. | |
Defaults to -1, means the last stage. | |
drop_rate (float): Dropout rate after position embedding. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
norm_cfg (dict): Config dict for normalization layer. Defaults to | |
``dict(type='LN')``. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Defaults to True. | |
out_type (str): The type of output features. Please choose from | |
- ``"cls_token"``: The class token tensor with shape (B, C). | |
- ``"featmap"``: The feature map tensor from the patch tokens | |
with shape (B, C, H, W). | |
- ``"avg_featmap"``: The global averaged feature map tensor | |
with shape (B, C). | |
- ``"raw"``: The raw feature tensor includes patch tokens and | |
class tokens with shape (B, L, C). | |
Defaults to ``"cls_token"``. | |
with_cls_token (bool): Whether concatenating class token into image | |
tokens as transformer input. Defaults to True. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Defaults to "bicubic". | |
t2t_cfg (dict): Extra config of Tokens-to-Token module. | |
Defaults to an empty dict. | |
layer_cfgs (Sequence | dict): Configs of each transformer layer in | |
encoder. Defaults to an empty dict. | |
init_cfg (dict, optional): The Config for initialization. | |
Defaults to None. | |
""" | |
OUT_TYPES = {'raw', 'cls_token', 'featmap', 'avg_featmap'} | |
def __init__(self, | |
img_size=224, | |
in_channels=3, | |
embed_dims=384, | |
num_layers=14, | |
out_indices=-1, | |
drop_rate=0., | |
drop_path_rate=0., | |
norm_cfg=dict(type='LN'), | |
final_norm=True, | |
out_type='cls_token', | |
with_cls_token=True, | |
interpolate_mode='bicubic', | |
t2t_cfg=dict(), | |
layer_cfgs=dict(), | |
init_cfg=None): | |
super().__init__(init_cfg) | |
# Token-to-Token Module | |
self.tokens_to_token = T2TModule( | |
img_size=img_size, | |
in_channels=in_channels, | |
embed_dims=embed_dims, | |
**t2t_cfg) | |
self.patch_resolution = self.tokens_to_token.init_out_size | |
num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
# Set out type | |
if out_type not in self.OUT_TYPES: | |
raise ValueError(f'Unsupported `out_type` {out_type}, please ' | |
f'choose from {self.OUT_TYPES}') | |
self.out_type = out_type | |
# Set cls token | |
if with_cls_token: | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims)) | |
self.num_extra_tokens = 1 | |
elif out_type != 'cls_token': | |
self.cls_token = None | |
self.num_extra_tokens = 0 | |
else: | |
raise ValueError( | |
'with_cls_token must be True when `out_type="cls_token"`.') | |
# Set position embedding | |
self.interpolate_mode = interpolate_mode | |
sinusoid_table = get_sinusoid_encoding( | |
num_patches + self.num_extra_tokens, embed_dims) | |
self.register_buffer('pos_embed', sinusoid_table) | |
self._register_load_state_dict_pre_hook(self._prepare_pos_embed) | |
self.drop_after_pos = nn.Dropout(p=drop_rate) | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must be a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = num_layers + index | |
assert 0 <= out_indices[i] <= num_layers, \ | |
f'Invalid out_indices {index}' | |
self.out_indices = out_indices | |
# stochastic depth decay rule | |
dpr = [x for x in np.linspace(0, drop_path_rate, num_layers)] | |
self.encoder = ModuleList() | |
for i in range(num_layers): | |
if isinstance(layer_cfgs, Sequence): | |
layer_cfg = layer_cfgs[i] | |
else: | |
layer_cfg = deepcopy(layer_cfgs) | |
layer_cfg = { | |
'embed_dims': embed_dims, | |
'num_heads': 6, | |
'feedforward_channels': 3 * embed_dims, | |
'drop_path_rate': dpr[i], | |
'qkv_bias': False, | |
'norm_cfg': norm_cfg, | |
**layer_cfg | |
} | |
layer = T2TTransformerLayer(**layer_cfg) | |
self.encoder.append(layer) | |
self.final_norm = final_norm | |
if final_norm: | |
self.norm = build_norm_layer(norm_cfg, embed_dims) | |
else: | |
self.norm = nn.Identity() | |
def init_weights(self): | |
super().init_weights() | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg['type'] == 'Pretrained'): | |
# Suppress custom init if use pretrained model. | |
return | |
trunc_normal_(self.cls_token, std=.02) | |
def _prepare_pos_embed(self, state_dict, prefix, *args, **kwargs): | |
name = prefix + 'pos_embed' | |
if name not in state_dict.keys(): | |
return | |
ckpt_pos_embed_shape = state_dict[name].shape | |
if self.pos_embed.shape != ckpt_pos_embed_shape: | |
from mmengine.logging import MMLogger | |
logger = MMLogger.get_current_instance() | |
logger.info( | |
f'Resize the pos_embed shape from {ckpt_pos_embed_shape} ' | |
f'to {self.pos_embed.shape}.') | |
ckpt_pos_embed_shape = to_2tuple( | |
int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens))) | |
pos_embed_shape = self.tokens_to_token.init_out_size | |
state_dict[name] = resize_pos_embed(state_dict[name], | |
ckpt_pos_embed_shape, | |
pos_embed_shape, | |
self.interpolate_mode, | |
self.num_extra_tokens) | |
def forward(self, x): | |
B = x.shape[0] | |
x, patch_resolution = self.tokens_to_token(x) | |
if self.cls_token is not None: | |
# stole cls_tokens impl from Phil Wang, thanks | |
cls_token = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_token, x), dim=1) | |
x = x + resize_pos_embed( | |
self.pos_embed, | |
self.patch_resolution, | |
patch_resolution, | |
mode=self.interpolate_mode, | |
num_extra_tokens=self.num_extra_tokens) | |
x = self.drop_after_pos(x) | |
outs = [] | |
for i, layer in enumerate(self.encoder): | |
x = layer(x) | |
if i == len(self.encoder) - 1 and self.final_norm: | |
x = self.norm(x) | |
if i in self.out_indices: | |
outs.append(self._format_output(x, patch_resolution)) | |
return tuple(outs) | |
def _format_output(self, x, hw): | |
if self.out_type == 'raw': | |
return x | |
if self.out_type == 'cls_token': | |
return x[:, 0] | |
patch_token = x[:, self.num_extra_tokens:] | |
if self.out_type == 'featmap': | |
B = x.size(0) | |
# (B, N, C) -> (B, H, W, C) -> (B, C, H, W) | |
return patch_token.reshape(B, *hw, -1).permute(0, 3, 1, 2) | |
if self.out_type == 'avg_featmap': | |
return patch_token.mean(dim=1) | |