Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import build_norm_layer | |
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention | |
from mmengine.model import BaseModule, ModuleList | |
from mmengine.model.weight_init import trunc_normal_ | |
from mmpretrain.registry import MODELS | |
from ..utils import to_2tuple | |
from .base_backbone import BaseBackbone | |
class TransformerBlock(BaseModule): | |
"""Implement a transformer block in TnTLayer. | |
Args: | |
embed_dims (int): The feature dimension | |
num_heads (int): Parallel attention heads | |
ffn_ratio (int): A ratio to calculate the hidden_dims in ffn layer. | |
Default: 4 | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Default 0. | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Default 0. | |
drop_path_rate (float): stochastic depth rate. Default 0. | |
num_fcs (int): The number of fully-connected layers for FFNs. Default 2 | |
qkv_bias (bool): Enable bias for qkv if True. Default False | |
act_cfg (dict): The activation config for FFNs. Defaults to GELU. | |
norm_cfg (dict): Config dict for normalization layer. Default | |
layer normalization | |
batch_first (bool): Key, Query and Value are shape of | |
(batch, n, embed_dim) or (n, batch, embed_dim). | |
(batch, n, embed_dim) is common case in CV. Defaults to False | |
init_cfg (dict, optional): Initialization config dict. Defaults to None | |
""" | |
def __init__(self, | |
embed_dims, | |
num_heads, | |
ffn_ratio=4, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
num_fcs=2, | |
qkv_bias=False, | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
batch_first=True, | |
init_cfg=None): | |
super(TransformerBlock, self).__init__(init_cfg=init_cfg) | |
self.norm_attn = build_norm_layer(norm_cfg, embed_dims)[1] | |
self.attn = MultiheadAttention( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
attn_drop=attn_drop_rate, | |
proj_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
batch_first=batch_first) | |
self.norm_ffn = build_norm_layer(norm_cfg, embed_dims)[1] | |
self.ffn = FFN( | |
embed_dims=embed_dims, | |
feedforward_channels=embed_dims * ffn_ratio, | |
num_fcs=num_fcs, | |
ffn_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
act_cfg=act_cfg) | |
if not qkv_bias: | |
self.attn.attn.in_proj_bias = None | |
def forward(self, x): | |
x = self.attn(self.norm_attn(x), identity=x) | |
x = self.ffn(self.norm_ffn(x), identity=x) | |
return x | |
class TnTLayer(BaseModule): | |
"""Implement one encoder layer in Transformer in Transformer. | |
Args: | |
num_pixel (int): The pixel number in target patch transformed with | |
a linear projection in inner transformer | |
embed_dims_inner (int): Feature dimension in inner transformer block | |
embed_dims_outer (int): Feature dimension in outer transformer block | |
num_heads_inner (int): Parallel attention heads in inner transformer. | |
num_heads_outer (int): Parallel attention heads in outer transformer. | |
inner_block_cfg (dict): Extra config of inner transformer block. | |
Defaults to empty dict. | |
outer_block_cfg (dict): Extra config of outer transformer block. | |
Defaults to empty dict. | |
norm_cfg (dict): Config dict for normalization layer. Default | |
layer normalization | |
init_cfg (dict, optional): Initialization config dict. Defaults to None | |
""" | |
def __init__(self, | |
num_pixel, | |
embed_dims_inner, | |
embed_dims_outer, | |
num_heads_inner, | |
num_heads_outer, | |
inner_block_cfg=dict(), | |
outer_block_cfg=dict(), | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super(TnTLayer, self).__init__(init_cfg=init_cfg) | |
self.inner_block = TransformerBlock( | |
embed_dims=embed_dims_inner, | |
num_heads=num_heads_inner, | |
**inner_block_cfg) | |
self.norm_proj = build_norm_layer(norm_cfg, embed_dims_inner)[1] | |
self.projection = nn.Linear( | |
embed_dims_inner * num_pixel, embed_dims_outer, bias=True) | |
self.outer_block = TransformerBlock( | |
embed_dims=embed_dims_outer, | |
num_heads=num_heads_outer, | |
**outer_block_cfg) | |
def forward(self, pixel_embed, patch_embed): | |
pixel_embed = self.inner_block(pixel_embed) | |
B, N, C = patch_embed.size() | |
patch_embed[:, 1:] = patch_embed[:, 1:] + self.projection( | |
self.norm_proj(pixel_embed).reshape(B, N - 1, -1)) | |
patch_embed = self.outer_block(patch_embed) | |
return pixel_embed, patch_embed | |
class PixelEmbed(BaseModule): | |
"""Image to Pixel Embedding. | |
Args: | |
img_size (int | tuple): The size of input image | |
patch_size (int): The size of one patch | |
in_channels (int): The num of input channels | |
embed_dims_inner (int): The num of channels of the target patch | |
transformed with a linear projection in inner transformer | |
stride (int): The stride of the conv2d layer. We use a conv2d layer | |
and a unfold layer to implement image to pixel embedding. | |
init_cfg (dict, optional): Initialization config dict | |
""" | |
def __init__(self, | |
img_size=224, | |
patch_size=16, | |
in_channels=3, | |
embed_dims_inner=48, | |
stride=4, | |
init_cfg=None): | |
super(PixelEmbed, self).__init__(init_cfg=init_cfg) | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
# patches_resolution property necessary for resizing | |
# positional embedding | |
patches_resolution = [ | |
img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
] | |
num_patches = patches_resolution[0] * patches_resolution[1] | |
self.img_size = img_size | |
self.num_patches = num_patches | |
self.embed_dims_inner = embed_dims_inner | |
new_patch_size = [math.ceil(ps / stride) for ps in patch_size] | |
self.new_patch_size = new_patch_size | |
self.proj = nn.Conv2d( | |
in_channels, | |
self.embed_dims_inner, | |
kernel_size=7, | |
padding=3, | |
stride=stride) | |
self.unfold = nn.Unfold( | |
kernel_size=new_patch_size, stride=new_patch_size) | |
def forward(self, x, pixel_pos): | |
B, C, H, W = x.shape | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model " \ | |
f'({self.img_size[0]}*{self.img_size[1]}).' | |
x = self.proj(x) | |
x = self.unfold(x) | |
x = x.transpose(1, | |
2).reshape(B * self.num_patches, self.embed_dims_inner, | |
self.new_patch_size[0], | |
self.new_patch_size[1]) | |
x = x + pixel_pos | |
x = x.reshape(B * self.num_patches, self.embed_dims_inner, | |
-1).transpose(1, 2) | |
return x | |
class TNT(BaseBackbone): | |
"""Transformer in Transformer. | |
A PyTorch implement of: `Transformer in Transformer | |
<https://arxiv.org/abs/2103.00112>`_ | |
Inspiration from | |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/tnt.py | |
Args: | |
arch (str | dict): Vision Transformer architecture | |
Default: 'b' | |
img_size (int | tuple): Input image size. Defaults to 224 | |
patch_size (int | tuple): The patch size. Deault to 16 | |
in_channels (int): Number of input channels. Defaults to 3 | |
ffn_ratio (int): A ratio to calculate the hidden_dims in ffn layer. | |
Default: 4 | |
qkv_bias (bool): Enable bias for qkv if True. Default False | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Default 0. | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Default 0. | |
drop_path_rate (float): stochastic depth rate. Default 0. | |
act_cfg (dict): The activation config for FFNs. Defaults to GELU. | |
norm_cfg (dict): Config dict for normalization layer. Default | |
layer normalization | |
first_stride (int): The stride of the conv2d layer. We use a conv2d | |
layer and a unfold layer to implement image to pixel embedding. | |
num_fcs (int): The number of fully-connected layers for FFNs. Default 2 | |
init_cfg (dict, optional): Initialization config dict | |
""" | |
arch_zoo = { | |
**dict.fromkeys( | |
['s', 'small'], { | |
'embed_dims_outer': 384, | |
'embed_dims_inner': 24, | |
'num_layers': 12, | |
'num_heads_outer': 6, | |
'num_heads_inner': 4 | |
}), | |
**dict.fromkeys( | |
['b', 'base'], { | |
'embed_dims_outer': 640, | |
'embed_dims_inner': 40, | |
'num_layers': 12, | |
'num_heads_outer': 10, | |
'num_heads_inner': 4 | |
}) | |
} | |
def __init__(self, | |
arch='b', | |
img_size=224, | |
patch_size=16, | |
in_channels=3, | |
ffn_ratio=4, | |
qkv_bias=False, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
first_stride=4, | |
num_fcs=2, | |
init_cfg=[ | |
dict(type='TruncNormal', layer='Linear', std=.02), | |
dict(type='Constant', layer='LayerNorm', val=1., bias=0.) | |
]): | |
super(TNT, self).__init__(init_cfg=init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = { | |
'embed_dims_outer', 'embed_dims_inner', 'num_layers', | |
'num_heads_inner', 'num_heads_outer' | |
} | |
assert isinstance(arch, dict) and set(arch) == essential_keys, \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims_inner = self.arch_settings['embed_dims_inner'] | |
self.embed_dims_outer = self.arch_settings['embed_dims_outer'] | |
# embed_dims for consistency with other models | |
self.embed_dims = self.embed_dims_outer | |
self.num_layers = self.arch_settings['num_layers'] | |
self.num_heads_inner = self.arch_settings['num_heads_inner'] | |
self.num_heads_outer = self.arch_settings['num_heads_outer'] | |
self.pixel_embed = PixelEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dims_inner=self.embed_dims_inner, | |
stride=first_stride) | |
num_patches = self.pixel_embed.num_patches | |
self.num_patches = num_patches | |
new_patch_size = self.pixel_embed.new_patch_size | |
num_pixel = new_patch_size[0] * new_patch_size[1] | |
self.norm1_proj = build_norm_layer(norm_cfg, num_pixel * | |
self.embed_dims_inner)[1] | |
self.projection = nn.Linear(num_pixel * self.embed_dims_inner, | |
self.embed_dims_outer) | |
self.norm2_proj = build_norm_layer(norm_cfg, self.embed_dims_outer)[1] | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims_outer)) | |
self.patch_pos = nn.Parameter( | |
torch.zeros(1, num_patches + 1, self.embed_dims_outer)) | |
self.pixel_pos = nn.Parameter( | |
torch.zeros(1, self.embed_dims_inner, new_patch_size[0], | |
new_patch_size[1])) | |
self.drop_after_pos = nn.Dropout(p=drop_rate) | |
dpr = [ | |
x.item() | |
for x in torch.linspace(0, drop_path_rate, self.num_layers) | |
] # stochastic depth decay rule | |
self.layers = ModuleList() | |
for i in range(self.num_layers): | |
block_cfg = dict( | |
ffn_ratio=ffn_ratio, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=dpr[i], | |
num_fcs=num_fcs, | |
qkv_bias=qkv_bias, | |
norm_cfg=norm_cfg, | |
batch_first=True) | |
self.layers.append( | |
TnTLayer( | |
num_pixel=num_pixel, | |
embed_dims_inner=self.embed_dims_inner, | |
embed_dims_outer=self.embed_dims_outer, | |
num_heads_inner=self.num_heads_inner, | |
num_heads_outer=self.num_heads_outer, | |
inner_block_cfg=block_cfg, | |
outer_block_cfg=block_cfg, | |
norm_cfg=norm_cfg)) | |
self.norm = build_norm_layer(norm_cfg, self.embed_dims_outer)[1] | |
trunc_normal_(self.cls_token, std=.02) | |
trunc_normal_(self.patch_pos, std=.02) | |
trunc_normal_(self.pixel_pos, std=.02) | |
def forward(self, x): | |
B = x.shape[0] | |
pixel_embed = self.pixel_embed(x, self.pixel_pos) | |
patch_embed = self.norm2_proj( | |
self.projection( | |
self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1)))) | |
patch_embed = torch.cat( | |
(self.cls_token.expand(B, -1, -1), patch_embed), dim=1) | |
patch_embed = patch_embed + self.patch_pos | |
patch_embed = self.drop_after_pos(patch_embed) | |
for layer in self.layers: | |
pixel_embed, patch_embed = layer(pixel_embed, patch_embed) | |
patch_embed = self.norm(patch_embed) | |
return (patch_embed[:, 0], ) | |