Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from abc import ABCMeta, abstractmethod | |
import torch | |
from mmengine.structures import InstanceData | |
from mmdet.structures.bbox import BaseBoxes, cat_boxes | |
from ..assigners import AssignResult | |
from .sampling_result import SamplingResult | |
class BaseSampler(metaclass=ABCMeta): | |
"""Base class of samplers. | |
Args: | |
num (int): Number of samples | |
pos_fraction (float): Fraction of positive samples | |
neg_pos_up (int): Upper bound number of negative and | |
positive samples. Defaults to -1. | |
add_gt_as_proposals (bool): Whether to add ground truth | |
boxes as proposals. Defaults to True. | |
""" | |
def __init__(self, | |
num: int, | |
pos_fraction: float, | |
neg_pos_ub: int = -1, | |
add_gt_as_proposals: bool = True, | |
**kwargs) -> None: | |
self.num = num | |
self.pos_fraction = pos_fraction | |
self.neg_pos_ub = neg_pos_ub | |
self.add_gt_as_proposals = add_gt_as_proposals | |
self.pos_sampler = self | |
self.neg_sampler = self | |
def _sample_pos(self, assign_result: AssignResult, num_expected: int, | |
**kwargs): | |
"""Sample positive samples.""" | |
pass | |
def _sample_neg(self, assign_result: AssignResult, num_expected: int, | |
**kwargs): | |
"""Sample negative samples.""" | |
pass | |
def sample(self, assign_result: AssignResult, pred_instances: InstanceData, | |
gt_instances: InstanceData, **kwargs) -> SamplingResult: | |
"""Sample positive and negative bboxes. | |
This is a simple implementation of bbox sampling given candidates, | |
assigning results and ground truth bboxes. | |
Args: | |
assign_result (:obj:`AssignResult`): Assigning results. | |
pred_instances (:obj:`InstanceData`): Instances of model | |
predictions. It includes ``priors``, and the priors can | |
be anchors or points, or the bboxes predicted by the | |
previous stage, has shape (n, 4). The bboxes predicted by | |
the current model or stage will be named ``bboxes``, | |
``labels``, and ``scores``, the same as the ``InstanceData`` | |
in other places. | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes``, with shape (k, 4), | |
and ``labels``, with shape (k, ). | |
Returns: | |
:obj:`SamplingResult`: Sampling result. | |
Example: | |
>>> from mmengine.structures import InstanceData | |
>>> from mmdet.models.task_modules.samplers import RandomSampler, | |
>>> from mmdet.models.task_modules.assigners import AssignResult | |
>>> from mmdet.models.task_modules.samplers. | |
... sampling_result import ensure_rng, random_boxes | |
>>> rng = ensure_rng(None) | |
>>> assign_result = AssignResult.random(rng=rng) | |
>>> pred_instances = InstanceData() | |
>>> pred_instances.priors = random_boxes(assign_result.num_preds, | |
... rng=rng) | |
>>> gt_instances = InstanceData() | |
>>> gt_instances.bboxes = random_boxes(assign_result.num_gts, | |
... rng=rng) | |
>>> gt_instances.labels = torch.randint( | |
... 0, 5, (assign_result.num_gts,), dtype=torch.long) | |
>>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1, | |
>>> add_gt_as_proposals=False) | |
>>> self = self.sample(assign_result, pred_instances, gt_instances) | |
""" | |
gt_bboxes = gt_instances.bboxes | |
priors = pred_instances.priors | |
gt_labels = gt_instances.labels | |
if len(priors.shape) < 2: | |
priors = priors[None, :] | |
gt_flags = priors.new_zeros((priors.shape[0], ), dtype=torch.uint8) | |
if self.add_gt_as_proposals and len(gt_bboxes) > 0: | |
# When `gt_bboxes` and `priors` are all box type, convert | |
# `gt_bboxes` type to `priors` type. | |
if (isinstance(gt_bboxes, BaseBoxes) | |
and isinstance(priors, BaseBoxes)): | |
gt_bboxes_ = gt_bboxes.convert_to(type(priors)) | |
else: | |
gt_bboxes_ = gt_bboxes | |
priors = cat_boxes([gt_bboxes_, priors], dim=0) | |
assign_result.add_gt_(gt_labels) | |
gt_ones = priors.new_ones(gt_bboxes_.shape[0], dtype=torch.uint8) | |
gt_flags = torch.cat([gt_ones, gt_flags]) | |
num_expected_pos = int(self.num * self.pos_fraction) | |
pos_inds = self.pos_sampler._sample_pos( | |
assign_result, num_expected_pos, bboxes=priors, **kwargs) | |
# We found that sampled indices have duplicated items occasionally. | |
# (may be a bug of PyTorch) | |
pos_inds = pos_inds.unique() | |
num_sampled_pos = pos_inds.numel() | |
num_expected_neg = self.num - num_sampled_pos | |
if self.neg_pos_ub >= 0: | |
_pos = max(1, num_sampled_pos) | |
neg_upper_bound = int(self.neg_pos_ub * _pos) | |
if num_expected_neg > neg_upper_bound: | |
num_expected_neg = neg_upper_bound | |
neg_inds = self.neg_sampler._sample_neg( | |
assign_result, num_expected_neg, bboxes=priors, **kwargs) | |
neg_inds = neg_inds.unique() | |
sampling_result = SamplingResult( | |
pos_inds=pos_inds, | |
neg_inds=neg_inds, | |
priors=priors, | |
gt_bboxes=gt_bboxes, | |
assign_result=assign_result, | |
gt_flags=gt_flags) | |
return sampling_result | |