RSPrompter / mmpl /models /pler /seg_pler.py
KyanChen's picture
Upload 159 files
1c3eb47
import os
from typing import Any
import einops
import mmengine
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from lightning.pytorch.utilities import grad_norm
from mmengine.structures import InstanceData
from mmpl.registry import MODELS
from mmseg.utils import SampleList
from ..builder import build_backbone, build_loss, build_neck, build_head
from .base_pler import BasePLer
from mmpl.structures import ClsDataSample
from .base import BaseClassifier
import lightning.pytorch as pl
import torch.nn.functional as F
@MODELS.register_module()
class SegPLer(BasePLer):
def __init__(self,
sam=None,
sam_checkpoint='',
points_per_side=None,
sam_prompt_generator=None,
only_img_encoder=False,
only_decoder=False,
global_prompt=None,
need_train_names=None,
head=None,
with_clip=False,
train_head=False,
threshold=0.5,
ignore_index=255,
train_cfg=None,
test_cfg=None,
*args, **kwargs):
super().__init__(*args, **kwargs)
self.save_hyperparameters()
self.need_train_names = need_train_names
self.ignore_index = ignore_index
self.threshold = threshold
self.only_img_encoder = only_img_encoder
self.only_decoder = only_decoder
self.global_prompt = global_prompt
self.train_head = train_head
if sam is not None:
if self.only_img_encoder:
self.sam = sam_model_registry[sam](sam_checkpoint).image_encoder
elif self.only_decoder:
self.prompt_encoder = sam_model_registry[sam](sam_checkpoint).prompt_encoder
self.mask_decoder = sam_model_registry[sam](sam_checkpoint).mask_decoder
else:
sam = sam_model_registry[sam](sam_checkpoint, train_head=train_head)
self.img_encoder = sam.image_encoder
self.prompt_encoder = sam.prompt_encoder
self.mask_decoder = sam.mask_decoder
self.prompt_encoder_no_mask_embed = sam.prompt_encoder.no_mask_embed
if points_per_side is not None:
self.point_grids = build_all_layer_point_grids(
points_per_side, 0, 1)
if sam_prompt_generator is not None:
self.sam_prompt_generator = MODELS.build(sam_prompt_generator)
if head is not None:
self.head = MODELS.build(head)
self.with_clip = with_clip
if global_prompt is not None:
if with_clip:
self.logits_prompt = nn.Sequential(
nn.Linear(1, 8),
nn.ReLU(),
nn.Linear(8, 16)
)
self.global_prompt = nn.Sequential(
nn.Conv2d(768+16, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 1, kernel_size=3, padding=1),
)
else:
self.global_prompt = nn.Sequential(
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 1, kernel_size=3, padding=1),
)
def setup(self, stage: str) -> None:
if self.need_train_names is not None:
self._set_grad(self.need_train_names, noneed_train_names=[])
def configure_sharded_model(self) -> None:
if self.trainer.strategy.__class__.__name__ == 'FSDPStrategy':
from torch.distributed.fsdp.wrap import wrap
self.sam_prompt_generator = wrap(self.sam_prompt_generator)
self.img_encoder = wrap(self.img_encoder)
self.prompt_encoder_no_mask_embed = wrap(self.prompt_encoder_no_mask_embed)
self.mask_decoder = wrap(self.mask_decoder)
self.prompt_encoder = wrap(self.prompt_encoder)
from torch.distributed.fsdp import CPUOffload
# from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
# import functools
# strategy = dict(
# type='FSDPStrategy',
# cpu_offload=CPUOffload(offload_params=True),
# auto_wrap_policy=functools.partial(
# size_based_auto_wrap_policy, min_num_params=int(1e8)
# )
#
# )
else:
super().configure_sharded_model()
def configure_optimizers(self):
if self.trainer.strategy.__class__.__name__ == 'DeepSpeedStrategy':
import deepspeed
# optimizer = deepspeed.runtime.
optimizer = deepspeed.ops.adam.FusedAdam(self.sam_prompt_generator.parameters(), lr=1e-4)
# optimizer = deepspeed.ops.adam.DeepSpeedCPUAdam(self.sam_prompt_generator.parameters(), lr=1e-4)
# optimizer = torch.optim.Adam(self.sam_prompt_generator.parameters(), lr=1e-4)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
return [optimizer], [lr_scheduler]
else:
return super().configure_optimizers()
def init_weights(self):
import ipdb; ipdb.set_trace()
pass
# def on_fit_start(self) -> None:
# if hasattr(self, 'train_evaluator'):
# self.train_evaluator = self.train_evaluator.to(self.device)
# if hasattr(self, 'val_evaluator'):
# self.val_evaluator = self.val_evaluator.to(self.device)
def train(self, mode=True):
if self.need_train_names is not None:
return self._set_train_module(mode, self.need_train_names)
else:
super().train(mode)
return self
def validation_step(self, batch, batch_idx):
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
if self.only_img_encoder:
masks_pred = self.forward_only_img_encoder(batch)
masks_pred = F.interpolate(masks_pred, size=seg_label.shape[-2:], mode='bilinear',
align_corners=True)
seg_logits = masks_pred > 0
elif self.only_decoder:
cls_logits, masks, n_iou_preds = self.forward_sam_prompt_generator(batch) # 1x100x2, 1x100x1x256x256, 1x100x1
masks = masks.squeeze(2)
masks = F.interpolate(masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.detach(), masks.detach())
seg_logits = seg_logits > self.threshold
else:
cls_logits, pred_masks, n_iou_preds = self.forward_sam_prompt_generator_all(
batch) # 1x100x2, 1x100x1x256x256, 1x100x1
pred_masks = pred_masks.squeeze(2)
pred_masks = F.interpolate(pred_masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.detach(), pred_masks.detach())
seg_logits = seg_logits > self.threshold
# import ipdb; ipdb.set_trace()
self.val_evaluator.update(seg_logits, seg_label)
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any):
cls_logits, n_img_masks = self.forward(batch)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
seg_label = seg_label.squeeze(1)
masks = F.interpolate(n_img_masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
masks = masks.squeeze(1) > 0
self.evaluator.update(masks, seg_label)
def _seg_data_to_instance_data(self, batch_data_samples: SampleList):
"""Perform forward propagation to convert paradigm from MMSegmentation
to MMDetection to ensure ``MMDET_Mask2FormerHead`` could be called
normally. Specifically, ``batch_gt_instances`` would be added.
Args:
batch_data_samples (List[:obj:`SegDataSample`]): The Data
Samples. It usually includes information such as
`gt_sem_seg`.
Returns:
tuple[Tensor]: A tuple contains two lists.
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``labels``, each is
unique ground truth label id of images, with
shape (num_gt, ) and ``masks``, each is ground truth
masks of each instances of a image, shape (num_gt, h, w).
- batch_img_metas (list[dict]): List of image meta information.
"""
batch_img_metas = []
batch_gt_instances = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
gt_masks = data_sample.instances_data.long()
gt_labels = data_sample.instances_label.long()
instance_data = InstanceData(labels=gt_labels, masks=gt_masks)
batch_gt_instances.append(instance_data)
return batch_gt_instances, batch_img_metas
def training_step(self, batch, batch_idx):
if self.only_img_encoder:
masks_pred = self.forward_only_img_encoder(batch)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
masks_pred = F.interpolate(masks_pred, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
losses = self.head.loss(masks_pred, seg_label)
masks_pred_result = masks_pred > 0
self.train_evaluator.update(masks_pred_result.detach(), seg_label.detach())
elif self.only_decoder:
cls_logits, masks, n_iou_preds = self.forward_sam_prompt_generator(batch) # 1x100x2, 1x100x1x256x256, 1x100x1
masks = masks.squeeze(2)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
masks = F.interpolate(masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.clone().detach(), masks.clone().detach())
seg_logits = seg_logits > self.threshold
self.train_evaluator.update(seg_logits, seg_label)
batch_gt_instances, batch_img_metas = self._seg_data_to_instance_data(
batch['data_samples'])
losses = self.head.loss(cls_logits, masks, batch_gt_instances, batch_img_metas)
else:
cls_logits, pred_masks, n_iou_preds = self.forward_sam_prompt_generator_all(
batch) # 1x100x2, 1x100x1x256x256, 1x100x1
pred_masks = pred_masks.squeeze(2)
if torch.isinf(pred_masks).any() or torch.isnan(pred_masks).any():
# import ipdb;
# ipdb.set_trace()
# raise ValueError('cost is nan in CrossEntropyLossCost')
print('!!!!!!!!!!!!!!!!!!!!loss is nan or inf!!!!!!!!!!!!!!!!!!')
return torch.tensor(0.0, requires_grad=True, device=self.device)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
pred_masks = F.interpolate(pred_masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.clone().detach(), pred_masks.clone().detach())
seg_logits = seg_logits > self.threshold
self.train_evaluator.update(seg_logits, seg_label)
batch_gt_instances, batch_img_metas = self._seg_data_to_instance_data(
batch['data_samples'])
losses = self.head.loss(cls_logits, pred_masks, batch_gt_instances, batch_img_metas)
parsed_losses, log_vars = self.parse_losses(losses)
log_vars = {f'train_{k}': v for k, v in log_vars.items()}
log_vars['loss'] = parsed_losses
self.log_dict(log_vars, prog_bar=True)
return log_vars
def on_before_optimizer_step(self, optimizer) -> None:
self.log_grad(module=self.sam_prompt_generator)
def post_process(self, mask_cls_results, mask_pred_results):
cls_score = F.softmax(mask_cls_results, dim=-1)[..., 1:2]
mask_pred = mask_pred_results.sigmoid()
seg_logits = torch.einsum('bqc, bqhw->bchw', cls_score, mask_pred)
return seg_logits
def forward_only_img_encoder(self, batch, *args: Any, **kwargs: Any) -> Any:
if self.with_clip:
clip_dense_embs = torch.stack([x.clip_dense_embs for x in batch['data_samples']], dim=0)
logits_per_images = torch.stack([x.logits_per_image for x in batch['data_samples']], dim=0)
logits_per_images = self.logits_prompt(logits_per_images) # Bx576x16
clip_dense_embs = torch.cat([clip_dense_embs, logits_per_images], dim=-1)
clip_dense_embs = rearrange(clip_dense_embs, 'b (h w) c -> b c h w', h=int(clip_dense_embs.shape[1]**0.5))
masks_pred = self.global_prompt(clip_dense_embs)
else:
image_embeddings = torch.stack([x.image_embeddings for x in batch['data_samples']], dim=0)
masks_pred = self.global_prompt(image_embeddings)
return masks_pred
def forward_sam_prompt_generator(self, batch, *args: Any, **kwargs: Any) -> Any:
inner_states = [x.inner_states for x in batch['data_samples']]
image_embeddings = torch.stack([x.image_embeddings for x in batch['data_samples']], dim=0)
inner_states_tmp = []
for idx in range(len(inner_states[0])):
inner_states_tmp.append(torch.stack([x[idx] for x in inner_states], dim=0).to(image_embeddings.device))
point_embs, cls_logits = self.sam_prompt_generator(inner_states_tmp)
# if has points prompt, then get points embeddings
if hasattr(self, 'point_grids'):
points_scale = np.array(img.shape[-2:], dtype=np.float32).reshape(1, -1) # 2,
points_for_image = self.point_grids[0] * points_scale
in_points = torch.as_tensor(points_for_image, device=img.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
in_points = rearrange(in_points, 'n c -> n () c')
in_labels = rearrange(in_labels, 'n -> n ()')
points = (in_points, in_labels)
sparse_embeddings, dense_embeddings = self.sam.prompt_encoder(
points=points,
boxes=None,
masks=None,
) # 1024x2x256; 1024x256x64x64
else:
# ponits_embeddings B T N C
sparse_embeddings = point_embs
dense_embeddings = self.prompt_encoder.no_mask_embed.weight.view(1, 1, -1, 1, 1).expand(
sparse_embeddings.shape[0], sparse_embeddings.shape[1], -1,
self.prompt_encoder.image_embedding_size[0], self.prompt_encoder.image_embedding_size[1]
)
n_img_masks = []
n_iou_preds = []
n_class_aware_probs = []
for curr_img_embedding, cur_s_emb, cur_d_emb in zip(image_embeddings, sparse_embeddings, dense_embeddings):
lr_masks, iou_pred, class_aware_prob = self.mask_decoder(
image_embeddings=curr_img_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=cur_s_emb,
dense_prompt_embeddings=cur_d_emb
)
mask_slice = slice(0, 1)
masks = lr_masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
class_aware_prob = class_aware_prob[:, mask_slice]
n_img_masks.append(masks)
n_iou_preds.append(iou_pred)
n_img_masks = torch.stack(n_img_masks, dim=0)
n_iou_preds = torch.stack(n_iou_preds, dim=0)
return cls_logits, n_img_masks, n_iou_preds
def forward_sam_prompt_generator_all(self, batch, *args: Any, **kwargs: Any) -> Any:
x = torch.stack(batch['inputs'], dim=0)
# if self.local_rank == 0:
# import pdb; pdb.set_trace()
# self.trainer.strategy.barrier()
x = x[:, [2, 1, 0], :, :] # BGR -> RGB
x = (x - self.img_encoder.pixel_mean) / self.img_encoder.pixel_std
with torch.no_grad():
image_embeddings, inner_states = self.img_encoder(x)
point_embs, cls_logits = self.sam_prompt_generator(inner_states)
# if has points prompt, then get points embeddings
if hasattr(self, 'point_grids'):
points_scale = np.array(img.shape[-2:], dtype=np.float32).reshape(1, -1) # 2,
points_for_image = self.point_grids[0] * points_scale
in_points = torch.as_tensor(points_for_image, device=img.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
in_points = rearrange(in_points, 'n c -> n () c')
in_labels = rearrange(in_labels, 'n -> n ()')
points = (in_points, in_labels)
sparse_embeddings, dense_embeddings = self.sam.prompt_encoder(
points=points,
boxes=None,
masks=None,
) # 1024x2x256; 1024x256x64x64
else:
# ponits_embeddings B T N C
sparse_embeddings = point_embs
dense_embeddings = self.prompt_encoder_no_mask_embed(torch.tensor([0], device=self.device)).view(1, 1, -1, 1, 1).expand(
sparse_embeddings.shape[0], sparse_embeddings.shape[1], -1,
image_embeddings.shape[-2], image_embeddings.shape[-1]
)
n_img_masks = []
n_iou_preds = []
n_class_aware_probs = []
for curr_img_embedding, cur_s_emb, cur_d_emb in zip(image_embeddings, sparse_embeddings, dense_embeddings):
lr_masks, iou_pred, class_aware_prob = self.mask_decoder(
image_embeddings=curr_img_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=cur_s_emb,
dense_prompt_embeddings=cur_d_emb
)
if self.train_head:
masks = lr_masks
iou_pred = iou_pred
else:
mask_slice = slice(0, 1)
masks = lr_masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
n_img_masks.append(masks)
n_iou_preds.append(iou_pred)
n_img_masks = torch.stack(n_img_masks, dim=0)
n_iou_preds = torch.stack(n_iou_preds, dim=0)
return cls_logits, n_img_masks, n_iou_preds
def vis_inter_states(self, batch, masks, *args: Any, **kwargs: Any):
folder = 'results/tmp'
import cv2
cv2.imwrite(os.path.join(folder, f'img.png'), batch['inputs'][0].permute((1, 2, 0)).detach().cpu().numpy())
cv2.imwrite(os.path.join(folder, f'label_mask.png'), seg_label[0][0].detach().cpu().numpy() * 255)
masks = masks > 0
for idx, mask_pred in enumerate(masks[0]):
cv2.imwrite(os.path.join(folder, f'pred_mask_{idx}.png'), mask_pred[0].detach().cpu().numpy() * 255)
import ipdb; ipdb.set_trace()