Spaces:
Runtime error
Runtime error
import torch | |
from mmengine.structures import InstanceData | |
from typing import List, Any | |
from mmpl.registry import MODELS | |
from mmseg.utils import SampleList | |
from .base_pler import BasePLer | |
import torch.nn.functional as F | |
from modules.sam import sam_model_registry | |
class SegSAMPLer(BasePLer): | |
def __init__(self, | |
backbone, | |
sam_neck=None, | |
panoptic_head=None, | |
panoptic_fusion_head=None, | |
need_train_names=None, | |
train_cfg=None, | |
test_cfg=None, | |
*args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.save_hyperparameters() | |
self.need_train_names = need_train_names | |
backbone_type = backbone.pop('type') | |
self.backbone = sam_model_registry[backbone_type](**backbone) | |
if sam_neck is not None: | |
self.sam_neck = MODELS.build(sam_neck) | |
panoptic_head_ = panoptic_head.deepcopy() | |
panoptic_head_.update(train_cfg=train_cfg) | |
panoptic_head_.update(test_cfg=test_cfg) | |
self.panoptic_head = MODELS.build(panoptic_head_) | |
panoptic_fusion_head_ = panoptic_fusion_head.deepcopy() | |
panoptic_fusion_head_.update(test_cfg=test_cfg) | |
self.panoptic_fusion_head = MODELS.build(panoptic_fusion_head_) | |
self.num_things_classes = self.panoptic_head.num_things_classes | |
self.num_stuff_classes = self.panoptic_head.num_stuff_classes | |
self.num_classes = self.panoptic_head.num_classes | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
def setup(self, stage: str) -> None: | |
super().setup(stage) | |
if self.need_train_names is not None: | |
self._set_grad(self.need_train_names, noneed_train_names=[]) | |
def init_weights(self): | |
import ipdb; ipdb.set_trace() | |
pass | |
def train(self, mode=True): | |
if self.need_train_names is not None: | |
return self._set_train_module(mode, self.need_train_names) | |
else: | |
super().train(mode) | |
return self | |
def extract_feat(self, batch_inputs): | |
feat, inter_features = self.backbone.image_encoder(batch_inputs) | |
return feat, inter_features | |
def validation_step(self, batch, batch_idx): | |
data = self.data_preprocessor(batch, False) | |
batch_inputs = data['inputs'] | |
batch_data_samples = data['data_samples'] | |
feats = self.extract_feat(batch_inputs) | |
if hasattr(self, 'sam_neck'): | |
feats = self.sam_neck(feats) | |
mask_cls_results, mask_pred_results = self.panoptic_head.predict( | |
feats, batch_data_samples) | |
else: | |
mask_cls_results, mask_pred_results = self.panoptic_head.predict( | |
feats, batch_data_samples, self.backbone) | |
results_list = self.panoptic_fusion_head.predict( | |
mask_cls_results, | |
mask_pred_results, | |
batch_data_samples, | |
rescale=True) | |
results = self.add_pred_to_datasample(batch_data_samples, results_list) | |
# preds = [] | |
# targets = [] | |
# for data_sample in results: | |
# result = dict() | |
# pred = data_sample.pred_instances | |
# result['boxes'] = pred['bboxes'] | |
# result['scores'] = pred['scores'] | |
# result['labels'] = pred['labels'] | |
# if 'masks' in pred: | |
# result['masks'] = pred['masks'] | |
# preds.append(result) | |
# # parse gt | |
# gt = dict() | |
# gt_data = data_sample.get('gt_instances', None) | |
# gt['boxes'] = gt_data['bboxes'] | |
# gt['labels'] = gt_data['labels'] | |
# if 'masks' in pred: | |
# gt['masks'] = gt_data['masks'].to_tensor(dtype=torch.bool, device=result['masks'].device) | |
# targets.append(gt) | |
# | |
# self.val_evaluator.update(preds, targets) | |
self.val_evaluator.update(batch, results) | |
def training_step(self, batch, batch_idx): | |
data = self.data_preprocessor(batch, True) | |
batch_inputs = data['inputs'] | |
batch_data_samples = data['data_samples'] | |
x = self.extract_feat(batch_inputs) | |
if hasattr(self, 'sam_neck'): | |
x = self.sam_neck(x) | |
losses = self.panoptic_head.loss(x, batch_data_samples) | |
else: | |
losses = self.panoptic_head.loss(x, batch_data_samples, self.backbone) | |
parsed_losses, log_vars = self.parse_losses(losses) | |
log_vars = {f'train_{k}': v for k, v in log_vars.items()} | |
log_vars['loss'] = parsed_losses | |
self.log_dict(log_vars, prog_bar=True) | |
return log_vars | |
def on_before_optimizer_step(self, optimizer) -> None: | |
self.log_grad(module=self.panoptic_head) | |
def add_pred_to_datasample(self, data_samples: SampleList, | |
results_list: List[dict]) -> SampleList: | |
"""Add predictions to `DetDataSample`. | |
Args: | |
data_samples (list[:obj:`DetDataSample`], optional): A batch of | |
data samples that contain annotations and predictions. | |
results_list (List[dict]): Instance segmentation, segmantic | |
segmentation and panoptic segmentation results. | |
Returns: | |
list[:obj:`DetDataSample`]: Detection results of the | |
input images. Each DetDataSample usually contain | |
'pred_instances' and `pred_panoptic_seg`. And the | |
``pred_instances`` usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
- masks (Tensor): Has a shape (num_instances, H, W). | |
And the ``pred_panoptic_seg`` contains the following key | |
- sem_seg (Tensor): panoptic segmentation mask, has a | |
shape (1, h, w). | |
""" | |
for data_sample, pred_results in zip(data_samples, results_list): | |
if 'pan_results' in pred_results: | |
data_sample.pred_panoptic_seg = pred_results['pan_results'] | |
if 'ins_results' in pred_results: | |
data_sample.pred_instances = pred_results['ins_results'] | |
assert 'sem_results' not in pred_results, 'segmantic ' \ | |
'segmentation results are not supported yet.' | |
return data_samples | |
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any: | |
data = self.data_preprocessor(batch, False) | |
batch_inputs = data['inputs'] | |
batch_data_samples = data['data_samples'] | |
# import ipdb; ipdb.set_trace() | |
feats = self.extract_feat(batch_inputs) | |
if hasattr(self, 'sam_neck'): | |
feats = self.sam_neck(feats) | |
mask_cls_results, mask_pred_results = self.panoptic_head.predict( | |
feats, batch_data_samples) | |
else: | |
mask_cls_results, mask_pred_results = self.panoptic_head.predict( | |
feats, batch_data_samples, self.backbone) | |
results_list = self.panoptic_fusion_head.predict( | |
mask_cls_results, | |
mask_pred_results, | |
batch_data_samples, | |
rescale=True) | |
results = self.add_pred_to_datasample(batch_data_samples, results_list) | |
return results | |