Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmengine.model import BaseModel | |
from mmpretrain.registry import MODELS, TOKENIZER | |
class BlipNLVR(BaseModel): | |
"""BLIP NLVR. | |
Args: | |
vision_backbone (dict): Backbone for extracting image features. | |
text_backbone (dict): Backbone for extracting text features. | |
but we integrate the vqa text extractor into the tokenizer part in | |
datasets/transform/ so we don't need text_backbone | |
multimodal_backbone (Optional[dict]): Backbone for extracting | |
multi-modal features. We apply this part as VQA fusion module. | |
neck (Optional[dict]): The neck module to process features from | |
backbone. Defaults to None. | |
head (Optional[dict]): The head module to calculate | |
loss from processed features. See :mod:`mmmultimodal.models.heads`. | |
Notice that if the head is not set, `loss` method cannot be used. | |
Defaults to None. | |
tokenizer: (Optional[dict]): The config for tokenizer | |
data_preprocessor (Optional[dict]): The config for preprocessing input | |
data. If None or no specified type, it will use | |
"MutimodalDataPreprocessor" as type. | |
See :class:`MutimodalDataPreprocessor` for more details. | |
Defaults to None. | |
init_cfg (Optional[dict]): the config to control the initialization. | |
Defaults to None. | |
""" | |
def __init__(self, | |
vision_backbone: dict, | |
multimodal_backbone: dict, | |
tokenizer: Optional[dict] = None, | |
max_txt_len: int = 35, | |
data_preprocessor: Optional[dict] = None, | |
init_cfg: Optional[dict] = None): | |
if data_preprocessor is None: | |
data_preprocessor = {} | |
if isinstance(data_preprocessor, dict): | |
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor') | |
data_preprocessor = MODELS.build(data_preprocessor) | |
super().__init__( | |
init_cfg=init_cfg, data_preprocessor=data_preprocessor) | |
if tokenizer is not None: | |
self.tokenizer = TOKENIZER.build(tokenizer) | |
self.vision_backbone = MODELS.build(vision_backbone) | |
self.multimodal_backbone = MODELS.build(multimodal_backbone) | |
self.max_txt_len = max_txt_len | |
# For simplity, directly use head definition here. | |
# If more complex head is designed, move this and loss to a new | |
# head module. | |
hidden_size = self.multimodal_backbone.config.hidden_size | |
self.head = nn.Sequential( | |
nn.Linear(hidden_size, hidden_size), | |
nn.ReLU(), | |
nn.Linear(hidden_size, 2), | |
) | |
def device(self): | |
return next(self.parameters()).device | |
def preprocess_text(self, data_samples): | |
sample_item = data_samples[0] | |
if sample_item is not None and 'text' in sample_item: | |
texts = [sample.get('text') for sample in data_samples] | |
else: | |
return None | |
# perform tokenize first if satisfied conditions | |
texts = self.tokenizer( | |
texts, | |
padding='longest', | |
truncation=True, | |
max_length=self.max_txt_len, | |
return_tensors='pt', | |
).to(self.device) | |
return texts | |
def forward( | |
self, | |
images: dict, | |
data_samples: Optional[List] = None, | |
mode: str = 'tensor', | |
): | |
"""The unified entry for a forward process in both training and test. | |
The method should accept only one mode "loss": | |
- "loss": Forward and return a dict of losses according to the given | |
images and data samples. | |
Note that this method doesn't handle neither back propagation nor | |
optimizer updating, which are done in the :meth:`train_step`. | |
Args: | |
images (dict of torch.Tensor): | |
img: pre_processed img tensor (N, C, ...). | |
text: tokenized text (N, L) | |
data_samples (List[CaptionDataSample], optional): | |
The annotation data of every samples. | |
'image': raw image data | |
'text' tokenized text | |
mode (str): Return what kind of value. Defaults to 'tensor'. | |
Returns: | |
The return type depends on ``mode``. | |
- If ``mode="loss"``, return a dict of tensor. | |
""" | |
# B, T, C, H, W to T*B, C, H, W | |
images = images.permute(1, 0, 2, 3, 4).flatten(0, 1) | |
if mode == 'loss': | |
return self.loss(images, data_samples) | |
elif mode == 'predict': | |
return self.predict(images, data_samples) | |
else: | |
raise RuntimeError(f'Invalid mode "{mode}".') | |
def predict(self, images, data_samples=None): | |
"""Predict caption.""" | |
# prepare inputs for decoder generation. | |
image_embeds = self.vision_backbone(images)[0] | |
texts = self.preprocess_text(data_samples) | |
image_atts = torch.ones( | |
image_embeds.size()[:-1], dtype=torch.long).to(self.device) | |
image0_embeds, image1_embeds = torch.split(image_embeds, | |
texts.input_ids.size(0)) | |
# multimodal fusion | |
multimodal_embeds = self.multimodal_backbone( | |
texts.input_ids, | |
attention_mask=texts.attention_mask, | |
encoder_hidden_states=[image0_embeds, image1_embeds], | |
encoder_attention_mask=[ | |
image_atts[:image0_embeds.size(0)], | |
image_atts[image0_embeds.size(0):], | |
], | |
return_dict=True, | |
) | |
# get prediction | |
outputs = self.head(multimodal_embeds.last_hidden_state[:, 0, :]) | |
pred_scores = F.softmax(outputs, dim=1) | |
for pred_score, data_sample in zip(pred_scores, data_samples): | |
data_sample.set_pred_score(pred_score) | |
data_sample.set_pred_label(pred_score.argmax(dim=0)) | |
return data_samples | |
def loss(self, images, data_samples): | |
"""Calculate losses from a batch of inputs and data samples. | |
Args: | |
images (torch.Tensor): The input tensor with shape | |
(N, C, ...) in general. | |
data_samples (List[ImageTextDataSample]): The annotation data of | |
every samples. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components. | |
""" | |
# prepare inputs for decoder generation. | |
image_embeds = self.vision_backbone(images)[0] | |
texts = self.preprocess_text(data_samples) | |
image_atts = torch.ones( | |
image_embeds.size()[:-1], dtype=torch.long).to(self.device) | |
image0_embeds, image1_embeds = torch.split(image_embeds, | |
texts.input_ids.size(0)) | |
# multimodal fusion | |
multimodal_embeds = self.multimodal_backbone( | |
texts.input_ids, | |
attention_mask=texts.attention_mask, | |
encoder_hidden_states=[image0_embeds, image1_embeds], | |
encoder_attention_mask=[ | |
image_atts[:image0_embeds.size(0)], | |
image_atts[image0_embeds.size(0):], | |
], | |
return_dict=True, | |
) | |
# get prediction | |
outputs = self.head(multimodal_embeds.last_hidden_state[:, 0, :]) | |
targets = torch.tensor([i.gt_label | |
for i in data_samples]).to(outputs.device) | |
loss = F.cross_entropy(outputs, targets) | |
return {'loss': loss} | |