RSPrompter / mmyolo /models /task_modules /coders /distance_point_bbox_coder.py
KyanChen's picture
Upload 89 files
3094730
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence, Union
import torch
from mmdet.models.task_modules.coders import \
DistancePointBBoxCoder as MMDET_DistancePointBBoxCoder
from mmdet.structures.bbox import bbox2distance, distance2bbox
from mmyolo.registry import TASK_UTILS
@TASK_UTILS.register_module()
class DistancePointBBoxCoder(MMDET_DistancePointBBoxCoder):
"""Distance Point BBox coder.
This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left,
right) and decode it back to the original.
"""
def decode(
self,
points: torch.Tensor,
pred_bboxes: torch.Tensor,
stride: torch.Tensor,
max_shape: Optional[Union[Sequence[int], torch.Tensor,
Sequence[Sequence[int]]]] = None
) -> torch.Tensor:
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (B, N, 2) or (N, 2).
pred_bboxes (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom). Shape (B, N, 4)
or (N, 4)
stride (Tensor): Featmap stride.
max_shape (Sequence[int] or torch.Tensor or Sequence[
Sequence[int]],optional): Maximum bounds for boxes, specifies
(H, W, C) or (H, W). If priors shape is (B, N, 4), then
the max_shape should be a Sequence[Sequence[int]],
and the length of max_shape should also be B.
Default None.
Returns:
Tensor: Boxes with shape (N, 4) or (B, N, 4)
"""
assert points.size(-2) == pred_bboxes.size(-2)
assert points.size(-1) == 2
assert pred_bboxes.size(-1) == 4
if self.clip_border is False:
max_shape = None
pred_bboxes = pred_bboxes * stride[None, :, None]
return distance2bbox(points, pred_bboxes, max_shape)
def encode(self,
points: torch.Tensor,
gt_bboxes: torch.Tensor,
max_dis: float = 16.,
eps: float = 0.01) -> torch.Tensor:
"""Encode bounding box to distances. The rewrite is to support batch
operations.
Args:
points (Tensor): Shape (B, N, 2) or (N, 2), The format is [x, y].
gt_bboxes (Tensor or :obj:`BaseBoxes`): Shape (N, 4), The format
is "xyxy"
max_dis (float): Upper bound of the distance. Default to 16..
eps (float): a small value to ensure target < max_dis, instead <=.
Default 0.01.
Returns:
Tensor: Box transformation deltas. The shape is (N, 4) or
(B, N, 4).
"""
assert points.size(-2) == gt_bboxes.size(-2)
assert points.size(-1) == 2
assert gt_bboxes.size(-1) == 4
return bbox2distance(points, gt_bboxes, max_dis, eps)