KyanChen's picture
Upload 89 files
3094730
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Union
import torch
from mmdet.models.task_modules.coders.base_bbox_coder import BaseBBoxCoder
from mmyolo.registry import TASK_UTILS
@TASK_UTILS.register_module()
class YOLOXBBoxCoder(BaseBBoxCoder):
"""YOLOX BBox coder.
This decoder decodes pred bboxes (delta_x, delta_x, w, h) to bboxes (tl_x,
tl_y, br_x, br_y).
"""
def encode(self, **kwargs):
"""Encode deltas between bboxes and ground truth boxes."""
pass
def decode(self, priors: torch.Tensor, pred_bboxes: torch.Tensor,
stride: Union[torch.Tensor, int]) -> torch.Tensor:
"""Decode regression results (delta_x, delta_x, w, h) to bboxes (tl_x,
tl_y, br_x, br_y).
Args:
priors (torch.Tensor): Basic boxes or points, e.g. anchors.
pred_bboxes (torch.Tensor): Encoded boxes with shape
stride (torch.Tensor | int): Strides of bboxes.
Returns:
torch.Tensor: Decoded boxes.
"""
stride = stride[None, :, None]
xys = (pred_bboxes[..., :2] * stride) + priors
whs = pred_bboxes[..., 2:].exp() * stride
tl_x = (xys[..., 0] - whs[..., 0] / 2)
tl_y = (xys[..., 1] - whs[..., 1] / 2)
br_x = (xys[..., 0] + whs[..., 0] / 2)
br_y = (xys[..., 1] + whs[..., 1] / 2)
decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1)
return decoded_bboxes