Spaces:
Runtime error
Runtime error
Upload 37 files
Browse files- modules/sam/__init__.py +15 -0
- modules/sam/__pycache__/__init__.cpython-310.pyc +0 -0
- modules/sam/__pycache__/automatic_mask_generator.cpython-310.pyc +0 -0
- modules/sam/__pycache__/build_sam.cpython-310.pyc +0 -0
- modules/sam/__pycache__/predictor.cpython-310.pyc +0 -0
- modules/sam/automatic_mask_generator.py +372 -0
- modules/sam/build_sam.py +108 -0
- modules/sam/modeling/__init__.py +11 -0
- modules/sam/modeling/__pycache__/__init__.cpython-310.pyc +0 -0
- modules/sam/modeling/__pycache__/common.cpython-310.pyc +0 -0
- modules/sam/modeling/__pycache__/image_encoder.cpython-310.pyc +0 -0
- modules/sam/modeling/__pycache__/mask_decoder.cpython-310.pyc +0 -0
- modules/sam/modeling/__pycache__/prompt_encoder.cpython-310.pyc +0 -0
- modules/sam/modeling/__pycache__/sam.cpython-310.pyc +0 -0
- modules/sam/modeling/__pycache__/transformer.cpython-310.pyc +0 -0
- modules/sam/modeling/common.py +43 -0
- modules/sam/modeling/image_encoder.py +396 -0
- modules/sam/modeling/mask_decoder.py +266 -0
- modules/sam/modeling/prompt_encoder.py +214 -0
- modules/sam/modeling/sam.py +174 -0
- modules/sam/modeling/transformer.py +240 -0
- modules/sam/notebooks/automatic_mask_generator_example.ipynb +0 -0
- modules/sam/notebooks/images/dog.jpg +0 -0
- modules/sam/notebooks/images/groceries.jpg +0 -0
- modules/sam/notebooks/images/truck.jpg +0 -0
- modules/sam/notebooks/onnx_model_example.ipynb +774 -0
- modules/sam/notebooks/predictor_example.ipynb +0 -0
- modules/sam/predictor.py +269 -0
- modules/sam/scripts/amg.py +238 -0
- modules/sam/scripts/export_onnx_model.py +201 -0
- modules/sam/utils/__init__.py +5 -0
- modules/sam/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- modules/sam/utils/__pycache__/amg.cpython-310.pyc +0 -0
- modules/sam/utils/__pycache__/transforms.cpython-310.pyc +0 -0
- modules/sam/utils/amg.py +346 -0
- modules/sam/utils/onnx.py +144 -0
- modules/sam/utils/transforms.py +102 -0
modules/sam/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from .build_sam import (
|
8 |
+
build_sam,
|
9 |
+
build_sam_vit_h,
|
10 |
+
build_sam_vit_l,
|
11 |
+
build_sam_vit_b,
|
12 |
+
sam_model_registry,
|
13 |
+
)
|
14 |
+
from .predictor import SamPredictor
|
15 |
+
from .automatic_mask_generator import SamAutomaticMaskGenerator
|
modules/sam/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (408 Bytes). View file
|
|
modules/sam/__pycache__/automatic_mask_generator.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
modules/sam/__pycache__/build_sam.cpython-310.pyc
ADDED
Binary file (2.2 kB). View file
|
|
modules/sam/__pycache__/predictor.cpython-310.pyc
ADDED
Binary file (9.95 kB). View file
|
|
modules/sam/automatic_mask_generator.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
10 |
+
|
11 |
+
from typing import Any, Dict, List, Optional, Tuple
|
12 |
+
|
13 |
+
from .modeling import Sam
|
14 |
+
from .predictor import SamPredictor
|
15 |
+
from .utils.amg import (
|
16 |
+
MaskData,
|
17 |
+
area_from_rle,
|
18 |
+
batch_iterator,
|
19 |
+
batched_mask_to_box,
|
20 |
+
box_xyxy_to_xywh,
|
21 |
+
build_all_layer_point_grids,
|
22 |
+
calculate_stability_score,
|
23 |
+
coco_encode_rle,
|
24 |
+
generate_crop_boxes,
|
25 |
+
is_box_near_crop_edge,
|
26 |
+
mask_to_rle_pytorch,
|
27 |
+
remove_small_regions,
|
28 |
+
rle_to_mask,
|
29 |
+
uncrop_boxes_xyxy,
|
30 |
+
uncrop_masks,
|
31 |
+
uncrop_points,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class SamAutomaticMaskGenerator:
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
model: Sam,
|
39 |
+
points_per_side: Optional[int] = 32,
|
40 |
+
points_per_batch: int = 64,
|
41 |
+
pred_iou_thresh: float = 0.88,
|
42 |
+
stability_score_thresh: float = 0.95,
|
43 |
+
stability_score_offset: float = 1.0,
|
44 |
+
box_nms_thresh: float = 0.7,
|
45 |
+
crop_n_layers: int = 0,
|
46 |
+
crop_nms_thresh: float = 0.7,
|
47 |
+
crop_overlap_ratio: float = 512 / 1500,
|
48 |
+
crop_n_points_downscale_factor: int = 1,
|
49 |
+
point_grids: Optional[List[np.ndarray]] = None,
|
50 |
+
min_mask_region_area: int = 0,
|
51 |
+
output_mode: str = "binary_mask",
|
52 |
+
) -> None:
|
53 |
+
"""
|
54 |
+
Using a SAM model, generates masks for the entire image.
|
55 |
+
Generates a grid of point prompts over the image, then filters
|
56 |
+
low quality and duplicate masks. The default settings are chosen
|
57 |
+
for SAM with a ViT-H backbone.
|
58 |
+
|
59 |
+
Arguments:
|
60 |
+
model (Sam): The SAM model to use for mask prediction.
|
61 |
+
points_per_side (int or None): The number of points to be sampled
|
62 |
+
along one side of the image. The total number of points is
|
63 |
+
points_per_side**2. If None, 'point_grids' must provide explicit
|
64 |
+
point sampling.
|
65 |
+
points_per_batch (int): Sets the number of points run simultaneously
|
66 |
+
by the model. Higher numbers may be faster but use more GPU memory.
|
67 |
+
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
68 |
+
model's predicted mask quality.
|
69 |
+
stability_score_thresh (float): A filtering threshold in [0,1], using
|
70 |
+
the stability of the mask under changes to the cutoff used to binarize
|
71 |
+
the model's mask predictions.
|
72 |
+
stability_score_offset (float): The amount to shift the cutoff when
|
73 |
+
calculated the stability score.
|
74 |
+
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
75 |
+
suppression to filter duplicate masks.
|
76 |
+
crop_n_layers (int): If >0, mask prediction will be run again on
|
77 |
+
crops of the image. Sets the number of layers to run, where each
|
78 |
+
layer has 2**i_layer number of image crops.
|
79 |
+
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
80 |
+
suppression to filter duplicate masks between different crops.
|
81 |
+
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
82 |
+
In the first crop layer, crops will overlap by this fraction of
|
83 |
+
the image length. Later layers with more crops scale down this overlap.
|
84 |
+
crop_n_points_downscale_factor (int): The number of points-per-side
|
85 |
+
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
86 |
+
point_grids (list(np.ndarray) or None): A list over explicit grids
|
87 |
+
of points used for sampling, normalized to [0,1]. The nth grid in the
|
88 |
+
list is used in the nth crop layer. Exclusive with points_per_side.
|
89 |
+
min_mask_region_area (int): If >0, postprocessing will be applied
|
90 |
+
to remove disconnected regions and holes in masks with area smaller
|
91 |
+
than min_mask_region_area. Requires opencv.
|
92 |
+
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
93 |
+
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
94 |
+
For large resolutions, 'binary_mask' may consume large amounts of
|
95 |
+
memory.
|
96 |
+
"""
|
97 |
+
|
98 |
+
assert (points_per_side is None) != (
|
99 |
+
point_grids is None
|
100 |
+
), "Exactly one of points_per_side or point_grid must be provided."
|
101 |
+
if points_per_side is not None:
|
102 |
+
self.point_grids = build_all_layer_point_grids(
|
103 |
+
points_per_side,
|
104 |
+
crop_n_layers,
|
105 |
+
crop_n_points_downscale_factor,
|
106 |
+
)
|
107 |
+
elif point_grids is not None:
|
108 |
+
self.point_grids = point_grids
|
109 |
+
else:
|
110 |
+
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
111 |
+
|
112 |
+
assert output_mode in [
|
113 |
+
"binary_mask",
|
114 |
+
"uncompressed_rle",
|
115 |
+
"coco_rle",
|
116 |
+
], f"Unknown output_mode {output_mode}."
|
117 |
+
if output_mode == "coco_rle":
|
118 |
+
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
119 |
+
|
120 |
+
if min_mask_region_area > 0:
|
121 |
+
import cv2 # type: ignore # noqa: F401
|
122 |
+
|
123 |
+
self.predictor = SamPredictor(model)
|
124 |
+
self.points_per_batch = points_per_batch
|
125 |
+
self.pred_iou_thresh = pred_iou_thresh
|
126 |
+
self.stability_score_thresh = stability_score_thresh
|
127 |
+
self.stability_score_offset = stability_score_offset
|
128 |
+
self.box_nms_thresh = box_nms_thresh
|
129 |
+
self.crop_n_layers = crop_n_layers
|
130 |
+
self.crop_nms_thresh = crop_nms_thresh
|
131 |
+
self.crop_overlap_ratio = crop_overlap_ratio
|
132 |
+
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
133 |
+
self.min_mask_region_area = min_mask_region_area
|
134 |
+
self.output_mode = output_mode
|
135 |
+
|
136 |
+
@torch.no_grad()
|
137 |
+
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
138 |
+
"""
|
139 |
+
Generates masks for the given image.
|
140 |
+
|
141 |
+
Arguments:
|
142 |
+
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
list(dict(str, any)): A list over records for masks. Each record is
|
146 |
+
a dict containing the following keys:
|
147 |
+
segmentation (dict(str, any) or np.ndarray): The mask. If
|
148 |
+
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
149 |
+
is a dictionary containing the RLE.
|
150 |
+
bbox (list(float)): The box around the mask, in XYWH format.
|
151 |
+
area (int): The area in pixels of the mask.
|
152 |
+
predicted_iou (float): The model's own prediction of the mask's
|
153 |
+
quality. This is filtered by the pred_iou_thresh parameter.
|
154 |
+
point_coords (list(list(float))): The point coordinates input
|
155 |
+
to the model to generate this mask.
|
156 |
+
stability_score (float): A measure of the mask's quality. This
|
157 |
+
is filtered on using the stability_score_thresh parameter.
|
158 |
+
crop_box (list(float)): The crop of the image used to generate
|
159 |
+
the mask, given in XYWH format.
|
160 |
+
"""
|
161 |
+
|
162 |
+
# Generate masks
|
163 |
+
mask_data = self._generate_masks(image)
|
164 |
+
|
165 |
+
# Filter small disconnected regions and holes in masks
|
166 |
+
if self.min_mask_region_area > 0:
|
167 |
+
mask_data = self.postprocess_small_regions(
|
168 |
+
mask_data,
|
169 |
+
self.min_mask_region_area,
|
170 |
+
max(self.box_nms_thresh, self.crop_nms_thresh),
|
171 |
+
)
|
172 |
+
|
173 |
+
# Encode masks
|
174 |
+
if self.output_mode == "coco_rle":
|
175 |
+
mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
|
176 |
+
elif self.output_mode == "binary_mask":
|
177 |
+
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
178 |
+
else:
|
179 |
+
mask_data["segmentations"] = mask_data["rles"]
|
180 |
+
|
181 |
+
# Write mask records
|
182 |
+
curr_anns = []
|
183 |
+
for idx in range(len(mask_data["segmentations"])):
|
184 |
+
ann = {
|
185 |
+
"segmentation": mask_data["segmentations"][idx],
|
186 |
+
"area": area_from_rle(mask_data["rles"][idx]),
|
187 |
+
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
188 |
+
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
189 |
+
"point_coords": [mask_data["points"][idx].tolist()],
|
190 |
+
"stability_score": mask_data["stability_score"][idx].item(),
|
191 |
+
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
192 |
+
}
|
193 |
+
curr_anns.append(ann)
|
194 |
+
|
195 |
+
return curr_anns
|
196 |
+
|
197 |
+
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
198 |
+
orig_size = image.shape[:2]
|
199 |
+
crop_boxes, layer_idxs = generate_crop_boxes(
|
200 |
+
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
201 |
+
)
|
202 |
+
|
203 |
+
# Iterate over image crops
|
204 |
+
data = MaskData()
|
205 |
+
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
206 |
+
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
207 |
+
data.cat(crop_data)
|
208 |
+
|
209 |
+
# Remove duplicate masks between crops
|
210 |
+
if len(crop_boxes) > 1:
|
211 |
+
# Prefer masks from smaller crops
|
212 |
+
scores = 1 / box_area(data["crop_boxes"])
|
213 |
+
scores = scores.to(data["boxes"].device)
|
214 |
+
keep_by_nms = batched_nms(
|
215 |
+
data["boxes"].float(),
|
216 |
+
scores,
|
217 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
218 |
+
iou_threshold=self.crop_nms_thresh,
|
219 |
+
)
|
220 |
+
data.filter(keep_by_nms)
|
221 |
+
|
222 |
+
data.to_numpy()
|
223 |
+
return data
|
224 |
+
|
225 |
+
def _process_crop(
|
226 |
+
self,
|
227 |
+
image: np.ndarray,
|
228 |
+
crop_box: List[int],
|
229 |
+
crop_layer_idx: int,
|
230 |
+
orig_size: Tuple[int, ...],
|
231 |
+
) -> MaskData:
|
232 |
+
# Crop the image and calculate embeddings
|
233 |
+
x0, y0, x1, y1 = crop_box
|
234 |
+
cropped_im = image[y0:y1, x0:x1, :]
|
235 |
+
cropped_im_size = cropped_im.shape[:2]
|
236 |
+
self.predictor.set_image(cropped_im)
|
237 |
+
|
238 |
+
# Get points for this crop
|
239 |
+
points_scale = np.array(cropped_im_size)[None, ::-1]
|
240 |
+
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
241 |
+
|
242 |
+
# Generate masks for this crop in batches
|
243 |
+
data = MaskData()
|
244 |
+
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
245 |
+
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
|
246 |
+
data.cat(batch_data)
|
247 |
+
del batch_data
|
248 |
+
self.predictor.reset_image()
|
249 |
+
|
250 |
+
# Remove duplicates within this crop.
|
251 |
+
keep_by_nms = batched_nms(
|
252 |
+
data["boxes"].float(),
|
253 |
+
data["iou_preds"],
|
254 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
255 |
+
iou_threshold=self.box_nms_thresh,
|
256 |
+
)
|
257 |
+
data.filter(keep_by_nms)
|
258 |
+
|
259 |
+
# Return to the original image frame
|
260 |
+
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
261 |
+
data["points"] = uncrop_points(data["points"], crop_box)
|
262 |
+
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
263 |
+
|
264 |
+
return data
|
265 |
+
|
266 |
+
def _process_batch(
|
267 |
+
self,
|
268 |
+
points: np.ndarray,
|
269 |
+
im_size: Tuple[int, ...],
|
270 |
+
crop_box: List[int],
|
271 |
+
orig_size: Tuple[int, ...],
|
272 |
+
) -> MaskData:
|
273 |
+
orig_h, orig_w = orig_size
|
274 |
+
|
275 |
+
# Run model on this batch
|
276 |
+
transformed_points = self.predictor.transform.apply_coords(points, im_size)
|
277 |
+
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
|
278 |
+
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
|
279 |
+
masks, iou_preds, _ = self.predictor.predict_torch(
|
280 |
+
in_points[:, None, :],
|
281 |
+
in_labels[:, None],
|
282 |
+
multimask_output=True,
|
283 |
+
return_logits=True,
|
284 |
+
)
|
285 |
+
|
286 |
+
# Serialize predictions and store in MaskData
|
287 |
+
data = MaskData(
|
288 |
+
masks=masks.flatten(0, 1),
|
289 |
+
iou_preds=iou_preds.flatten(0, 1),
|
290 |
+
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
|
291 |
+
)
|
292 |
+
del masks
|
293 |
+
|
294 |
+
# Filter by predicted IoU
|
295 |
+
if self.pred_iou_thresh > 0.0:
|
296 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
297 |
+
data.filter(keep_mask)
|
298 |
+
|
299 |
+
# Calculate stability score
|
300 |
+
data["stability_score"] = calculate_stability_score(
|
301 |
+
data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
|
302 |
+
)
|
303 |
+
if self.stability_score_thresh > 0.0:
|
304 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
305 |
+
data.filter(keep_mask)
|
306 |
+
|
307 |
+
# Threshold masks and calculate boxes
|
308 |
+
data["masks"] = data["masks"] > self.predictor.model.mask_threshold
|
309 |
+
data["boxes"] = batched_mask_to_box(data["masks"])
|
310 |
+
|
311 |
+
# Filter boxes that touch crop boundaries
|
312 |
+
keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
|
313 |
+
if not torch.all(keep_mask):
|
314 |
+
data.filter(keep_mask)
|
315 |
+
|
316 |
+
# Compress to RLE
|
317 |
+
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
318 |
+
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
319 |
+
del data["masks"]
|
320 |
+
|
321 |
+
return data
|
322 |
+
|
323 |
+
@staticmethod
|
324 |
+
def postprocess_small_regions(
|
325 |
+
mask_data: MaskData, min_area: int, nms_thresh: float
|
326 |
+
) -> MaskData:
|
327 |
+
"""
|
328 |
+
Removes small disconnected regions and holes in masks, then reruns
|
329 |
+
box NMS to remove any new duplicates.
|
330 |
+
|
331 |
+
Edits mask_data in place.
|
332 |
+
|
333 |
+
Requires open-cv as a dependency.
|
334 |
+
"""
|
335 |
+
if len(mask_data["rles"]) == 0:
|
336 |
+
return mask_data
|
337 |
+
|
338 |
+
# Filter small disconnected regions and holes
|
339 |
+
new_masks = []
|
340 |
+
scores = []
|
341 |
+
for rle in mask_data["rles"]:
|
342 |
+
mask = rle_to_mask(rle)
|
343 |
+
|
344 |
+
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
345 |
+
unchanged = not changed
|
346 |
+
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
347 |
+
unchanged = unchanged and not changed
|
348 |
+
|
349 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
350 |
+
# Give score=0 to changed masks and score=1 to unchanged masks
|
351 |
+
# so NMS will prefer ones that didn't need postprocessing
|
352 |
+
scores.append(float(unchanged))
|
353 |
+
|
354 |
+
# Recalculate boxes and remove any new duplicates
|
355 |
+
masks = torch.cat(new_masks, dim=0)
|
356 |
+
boxes = batched_mask_to_box(masks)
|
357 |
+
keep_by_nms = batched_nms(
|
358 |
+
boxes.float(),
|
359 |
+
torch.as_tensor(scores),
|
360 |
+
torch.zeros_like(boxes[:, 0]), # categories
|
361 |
+
iou_threshold=nms_thresh,
|
362 |
+
)
|
363 |
+
|
364 |
+
# Only recalculate RLEs for masks that have changed
|
365 |
+
for i_mask in keep_by_nms:
|
366 |
+
if scores[i_mask] == 0.0:
|
367 |
+
mask_torch = masks[i_mask].unsqueeze(0)
|
368 |
+
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
369 |
+
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
370 |
+
mask_data.filter(keep_by_nms)
|
371 |
+
|
372 |
+
return mask_data
|
modules/sam/build_sam.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
|
12 |
+
|
13 |
+
|
14 |
+
def build_sam_vit_h(checkpoint=None):
|
15 |
+
return _build_sam(
|
16 |
+
encoder_embed_dim=1280,
|
17 |
+
encoder_depth=32,
|
18 |
+
encoder_num_heads=16,
|
19 |
+
encoder_global_attn_indexes=[7, 15, 23, 31],
|
20 |
+
checkpoint=checkpoint,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
build_sam = build_sam_vit_h
|
25 |
+
|
26 |
+
|
27 |
+
def build_sam_vit_l(checkpoint=None):
|
28 |
+
return _build_sam(
|
29 |
+
encoder_embed_dim=1024,
|
30 |
+
encoder_depth=24,
|
31 |
+
encoder_num_heads=16,
|
32 |
+
encoder_global_attn_indexes=[5, 11, 17, 23],
|
33 |
+
checkpoint=checkpoint,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def build_sam_vit_b(checkpoint=None):
|
38 |
+
return _build_sam(
|
39 |
+
encoder_embed_dim=768,
|
40 |
+
encoder_depth=12,
|
41 |
+
encoder_num_heads=12,
|
42 |
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
43 |
+
checkpoint=checkpoint,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
sam_model_registry = {
|
48 |
+
"default": build_sam_vit_h,
|
49 |
+
"vit_h": build_sam_vit_h,
|
50 |
+
"vit_l": build_sam_vit_l,
|
51 |
+
"vit_b": build_sam_vit_b,
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
def _build_sam(
|
56 |
+
encoder_embed_dim,
|
57 |
+
encoder_depth,
|
58 |
+
encoder_num_heads,
|
59 |
+
encoder_global_attn_indexes,
|
60 |
+
checkpoint=None,
|
61 |
+
):
|
62 |
+
prompt_embed_dim = 256
|
63 |
+
image_size = 1024
|
64 |
+
vit_patch_size = 16
|
65 |
+
image_embedding_size = image_size // vit_patch_size
|
66 |
+
sam = Sam(
|
67 |
+
image_encoder=ImageEncoderViT(
|
68 |
+
depth=encoder_depth,
|
69 |
+
embed_dim=encoder_embed_dim,
|
70 |
+
img_size=image_size,
|
71 |
+
mlp_ratio=4,
|
72 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
73 |
+
num_heads=encoder_num_heads,
|
74 |
+
patch_size=vit_patch_size,
|
75 |
+
qkv_bias=True,
|
76 |
+
use_rel_pos=True,
|
77 |
+
global_attn_indexes=encoder_global_attn_indexes,
|
78 |
+
window_size=14,
|
79 |
+
out_chans=prompt_embed_dim,
|
80 |
+
),
|
81 |
+
prompt_encoder=PromptEncoder(
|
82 |
+
embed_dim=prompt_embed_dim,
|
83 |
+
image_embedding_size=(image_embedding_size, image_embedding_size),
|
84 |
+
input_image_size=(image_size, image_size),
|
85 |
+
mask_in_chans=16,
|
86 |
+
),
|
87 |
+
mask_decoder=MaskDecoder(
|
88 |
+
num_multimask_outputs=3,
|
89 |
+
transformer=TwoWayTransformer(
|
90 |
+
depth=2,
|
91 |
+
embedding_dim=prompt_embed_dim,
|
92 |
+
mlp_dim=2048,
|
93 |
+
num_heads=8,
|
94 |
+
),
|
95 |
+
transformer_dim=prompt_embed_dim,
|
96 |
+
iou_head_depth=3,
|
97 |
+
iou_head_hidden_dim=256,
|
98 |
+
),
|
99 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
100 |
+
pixel_std=[58.395, 57.12, 57.375],
|
101 |
+
)
|
102 |
+
sam.eval()
|
103 |
+
if checkpoint is not None:
|
104 |
+
with open(checkpoint, "rb") as f:
|
105 |
+
state_dict = torch.load(f)
|
106 |
+
sam.load_state_dict(state_dict)
|
107 |
+
print(f"Loaded SAM model from {checkpoint}")
|
108 |
+
return sam
|
modules/sam/modeling/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from .sam import Sam
|
8 |
+
from .image_encoder import ImageEncoderViT
|
9 |
+
from .mask_decoder import MaskDecoder
|
10 |
+
from .prompt_encoder import PromptEncoder
|
11 |
+
from .transformer import TwoWayTransformer
|
modules/sam/modeling/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (395 Bytes). View file
|
|
modules/sam/modeling/__pycache__/common.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
modules/sam/modeling/__pycache__/image_encoder.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
modules/sam/modeling/__pycache__/mask_decoder.cpython-310.pyc
ADDED
Binary file (6.72 kB). View file
|
|
modules/sam/modeling/__pycache__/prompt_encoder.cpython-310.pyc
ADDED
Binary file (7.68 kB). View file
|
|
modules/sam/modeling/__pycache__/sam.cpython-310.pyc
ADDED
Binary file (6.66 kB). View file
|
|
modules/sam/modeling/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (6.6 kB). View file
|
|
modules/sam/modeling/common.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from typing import Type
|
11 |
+
|
12 |
+
|
13 |
+
class MLPBlock(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
embedding_dim: int,
|
17 |
+
mlp_dim: int,
|
18 |
+
act: Type[nn.Module] = nn.GELU,
|
19 |
+
) -> None:
|
20 |
+
super().__init__()
|
21 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
22 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
23 |
+
self.act = act()
|
24 |
+
|
25 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
26 |
+
return self.lin2(self.act(self.lin1(x)))
|
27 |
+
|
28 |
+
|
29 |
+
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
30 |
+
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
31 |
+
class LayerNorm2d(nn.Module):
|
32 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
33 |
+
super().__init__()
|
34 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
35 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
36 |
+
self.eps = eps
|
37 |
+
|
38 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
39 |
+
u = x.mean(1, keepdim=True)
|
40 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
41 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
42 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
43 |
+
return x
|
modules/sam/modeling/image_encoder.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from typing import Optional, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d, MLPBlock
|
14 |
+
|
15 |
+
|
16 |
+
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
17 |
+
class ImageEncoderViT(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
img_size: int = 1024,
|
21 |
+
patch_size: int = 16,
|
22 |
+
in_chans: int = 3,
|
23 |
+
embed_dim: int = 768,
|
24 |
+
depth: int = 12,
|
25 |
+
num_heads: int = 12,
|
26 |
+
mlp_ratio: float = 4.0,
|
27 |
+
out_chans: int = 256,
|
28 |
+
qkv_bias: bool = True,
|
29 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
30 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
31 |
+
use_abs_pos: bool = True,
|
32 |
+
use_rel_pos: bool = False,
|
33 |
+
rel_pos_zero_init: bool = True,
|
34 |
+
window_size: int = 0,
|
35 |
+
global_attn_indexes: Tuple[int, ...] = (),
|
36 |
+
) -> None:
|
37 |
+
"""
|
38 |
+
Args:
|
39 |
+
img_size (int): Input image size.
|
40 |
+
patch_size (int): Patch size.
|
41 |
+
in_chans (int): Number of input image channels.
|
42 |
+
embed_dim (int): Patch embedding dimension.
|
43 |
+
depth (int): Depth of ViT.
|
44 |
+
num_heads (int): Number of attention heads in each ViT block.
|
45 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
46 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
47 |
+
norm_layer (nn.Module): Normalization layer.
|
48 |
+
act_layer (nn.Module): Activation layer.
|
49 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
50 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
51 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
52 |
+
window_size (int): Window size for window attention blocks.
|
53 |
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
54 |
+
"""
|
55 |
+
super().__init__()
|
56 |
+
self.img_size = img_size
|
57 |
+
|
58 |
+
self.patch_embed = PatchEmbed(
|
59 |
+
kernel_size=(patch_size, patch_size),
|
60 |
+
stride=(patch_size, patch_size),
|
61 |
+
in_chans=in_chans,
|
62 |
+
embed_dim=embed_dim,
|
63 |
+
)
|
64 |
+
|
65 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
66 |
+
if use_abs_pos:
|
67 |
+
# Initialize absolute positional embedding with pretrain image size.
|
68 |
+
self.pos_embed = nn.Parameter(
|
69 |
+
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
70 |
+
)
|
71 |
+
|
72 |
+
self.blocks = nn.ModuleList()
|
73 |
+
for i in range(depth):
|
74 |
+
block = Block(
|
75 |
+
dim=embed_dim,
|
76 |
+
num_heads=num_heads,
|
77 |
+
mlp_ratio=mlp_ratio,
|
78 |
+
qkv_bias=qkv_bias,
|
79 |
+
norm_layer=norm_layer,
|
80 |
+
act_layer=act_layer,
|
81 |
+
use_rel_pos=use_rel_pos,
|
82 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
83 |
+
window_size=window_size if i not in global_attn_indexes else 0,
|
84 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
85 |
+
)
|
86 |
+
self.blocks.append(block)
|
87 |
+
|
88 |
+
self.neck = nn.Sequential(
|
89 |
+
nn.Conv2d(
|
90 |
+
embed_dim,
|
91 |
+
out_chans,
|
92 |
+
kernel_size=1,
|
93 |
+
bias=False,
|
94 |
+
),
|
95 |
+
LayerNorm2d(out_chans),
|
96 |
+
nn.Conv2d(
|
97 |
+
out_chans,
|
98 |
+
out_chans,
|
99 |
+
kernel_size=3,
|
100 |
+
padding=1,
|
101 |
+
bias=False,
|
102 |
+
),
|
103 |
+
LayerNorm2d(out_chans),
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
107 |
+
x = self.patch_embed(x)
|
108 |
+
if self.pos_embed is not None:
|
109 |
+
x = x + self.pos_embed
|
110 |
+
inter_features = []
|
111 |
+
for blk in self.blocks:
|
112 |
+
x = blk(x)
|
113 |
+
inter_features.append(x)
|
114 |
+
|
115 |
+
x = self.neck(x.permute(0, 3, 1, 2))
|
116 |
+
|
117 |
+
return x, inter_features
|
118 |
+
|
119 |
+
|
120 |
+
class Block(nn.Module):
|
121 |
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
dim: int,
|
126 |
+
num_heads: int,
|
127 |
+
mlp_ratio: float = 4.0,
|
128 |
+
qkv_bias: bool = True,
|
129 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
130 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
131 |
+
use_rel_pos: bool = False,
|
132 |
+
rel_pos_zero_init: bool = True,
|
133 |
+
window_size: int = 0,
|
134 |
+
input_size: Optional[Tuple[int, int]] = None,
|
135 |
+
) -> None:
|
136 |
+
"""
|
137 |
+
Args:
|
138 |
+
dim (int): Number of input channels.
|
139 |
+
num_heads (int): Number of attention heads in each ViT block.
|
140 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
141 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
142 |
+
norm_layer (nn.Module): Normalization layer.
|
143 |
+
act_layer (nn.Module): Activation layer.
|
144 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
145 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
146 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
147 |
+
use global attention.
|
148 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
149 |
+
positional parameter size.
|
150 |
+
"""
|
151 |
+
super().__init__()
|
152 |
+
self.norm1 = norm_layer(dim)
|
153 |
+
self.attn = Attention(
|
154 |
+
dim,
|
155 |
+
num_heads=num_heads,
|
156 |
+
qkv_bias=qkv_bias,
|
157 |
+
use_rel_pos=use_rel_pos,
|
158 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
159 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
160 |
+
)
|
161 |
+
|
162 |
+
self.norm2 = norm_layer(dim)
|
163 |
+
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
164 |
+
|
165 |
+
self.window_size = window_size
|
166 |
+
|
167 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
168 |
+
shortcut = x
|
169 |
+
x = self.norm1(x)
|
170 |
+
# Window partition
|
171 |
+
if self.window_size > 0:
|
172 |
+
H, W = x.shape[1], x.shape[2]
|
173 |
+
x, pad_hw = window_partition(x, self.window_size)
|
174 |
+
|
175 |
+
x = self.attn(x)
|
176 |
+
# Reverse window partition
|
177 |
+
if self.window_size > 0:
|
178 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
179 |
+
|
180 |
+
x = shortcut + x
|
181 |
+
x = x + self.mlp(self.norm2(x))
|
182 |
+
|
183 |
+
return x
|
184 |
+
|
185 |
+
|
186 |
+
class Attention(nn.Module):
|
187 |
+
"""Multi-head Attention block with relative position embeddings."""
|
188 |
+
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
dim: int,
|
192 |
+
num_heads: int = 8,
|
193 |
+
qkv_bias: bool = True,
|
194 |
+
use_rel_pos: bool = False,
|
195 |
+
rel_pos_zero_init: bool = True,
|
196 |
+
input_size: Optional[Tuple[int, int]] = None,
|
197 |
+
) -> None:
|
198 |
+
"""
|
199 |
+
Args:
|
200 |
+
dim (int): Number of input channels.
|
201 |
+
num_heads (int): Number of attention heads.
|
202 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
203 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
204 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
205 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
206 |
+
positional parameter size.
|
207 |
+
"""
|
208 |
+
super().__init__()
|
209 |
+
self.num_heads = num_heads
|
210 |
+
head_dim = dim // num_heads
|
211 |
+
self.scale = head_dim**-0.5
|
212 |
+
|
213 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
214 |
+
self.proj = nn.Linear(dim, dim)
|
215 |
+
|
216 |
+
self.use_rel_pos = use_rel_pos
|
217 |
+
if self.use_rel_pos:
|
218 |
+
assert (
|
219 |
+
input_size is not None
|
220 |
+
), "Input size must be provided if using relative positional encoding."
|
221 |
+
# initialize relative positional embeddings
|
222 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
223 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
224 |
+
|
225 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
226 |
+
B, H, W, _ = x.shape
|
227 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
228 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
229 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
230 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
231 |
+
|
232 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
233 |
+
|
234 |
+
if self.use_rel_pos:
|
235 |
+
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
236 |
+
|
237 |
+
attn = attn.softmax(dim=-1)
|
238 |
+
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
239 |
+
x = self.proj(x)
|
240 |
+
|
241 |
+
return x
|
242 |
+
|
243 |
+
|
244 |
+
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
245 |
+
"""
|
246 |
+
Partition into non-overlapping windows with padding if needed.
|
247 |
+
Args:
|
248 |
+
x (tensor): input tokens with [B, H, W, C].
|
249 |
+
window_size (int): window size.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
253 |
+
(Hp, Wp): padded height and width before partition
|
254 |
+
"""
|
255 |
+
B, H, W, C = x.shape
|
256 |
+
|
257 |
+
pad_h = (window_size - H % window_size) % window_size
|
258 |
+
pad_w = (window_size - W % window_size) % window_size
|
259 |
+
if pad_h > 0 or pad_w > 0:
|
260 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
261 |
+
Hp, Wp = H + pad_h, W + pad_w
|
262 |
+
|
263 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
264 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
265 |
+
return windows, (Hp, Wp)
|
266 |
+
|
267 |
+
|
268 |
+
def window_unpartition(
|
269 |
+
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
270 |
+
) -> torch.Tensor:
|
271 |
+
"""
|
272 |
+
Window unpartition into original sequences and removing padding.
|
273 |
+
Args:
|
274 |
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
275 |
+
window_size (int): window size.
|
276 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
277 |
+
hw (Tuple): original height and width (H, W) before padding.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
x: unpartitioned sequences with [B, H, W, C].
|
281 |
+
"""
|
282 |
+
Hp, Wp = pad_hw
|
283 |
+
H, W = hw
|
284 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
285 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
286 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
287 |
+
|
288 |
+
if Hp > H or Wp > W:
|
289 |
+
x = x[:, :H, :W, :].contiguous()
|
290 |
+
return x
|
291 |
+
|
292 |
+
|
293 |
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
294 |
+
"""
|
295 |
+
Get relative positional embeddings according to the relative positions of
|
296 |
+
query and key sizes.
|
297 |
+
Args:
|
298 |
+
q_size (int): size of query q.
|
299 |
+
k_size (int): size of key k.
|
300 |
+
rel_pos (Tensor): relative position embeddings (L, C).
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
Extracted positional embeddings according to relative positions.
|
304 |
+
"""
|
305 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
306 |
+
# Interpolate rel pos if needed.
|
307 |
+
if rel_pos.shape[0] != max_rel_dist:
|
308 |
+
# Interpolate rel pos.
|
309 |
+
rel_pos_resized = F.interpolate(
|
310 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
311 |
+
size=max_rel_dist,
|
312 |
+
mode="linear",
|
313 |
+
)
|
314 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
315 |
+
else:
|
316 |
+
rel_pos_resized = rel_pos
|
317 |
+
|
318 |
+
# Scale the coords with short length if shapes for q and k are different.
|
319 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
320 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
321 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
322 |
+
|
323 |
+
return rel_pos_resized[relative_coords.long()]
|
324 |
+
|
325 |
+
|
326 |
+
def add_decomposed_rel_pos(
|
327 |
+
attn: torch.Tensor,
|
328 |
+
q: torch.Tensor,
|
329 |
+
rel_pos_h: torch.Tensor,
|
330 |
+
rel_pos_w: torch.Tensor,
|
331 |
+
q_size: Tuple[int, int],
|
332 |
+
k_size: Tuple[int, int],
|
333 |
+
) -> torch.Tensor:
|
334 |
+
"""
|
335 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
336 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
337 |
+
Args:
|
338 |
+
attn (Tensor): attention map.
|
339 |
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
340 |
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
341 |
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
342 |
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
343 |
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
344 |
+
|
345 |
+
Returns:
|
346 |
+
attn (Tensor): attention map with added relative positional embeddings.
|
347 |
+
"""
|
348 |
+
q_h, q_w = q_size
|
349 |
+
k_h, k_w = k_size
|
350 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
351 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
352 |
+
|
353 |
+
B, _, dim = q.shape
|
354 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
355 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
356 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
357 |
+
|
358 |
+
attn = (
|
359 |
+
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
360 |
+
).view(B, q_h * q_w, k_h * k_w)
|
361 |
+
|
362 |
+
return attn
|
363 |
+
|
364 |
+
|
365 |
+
class PatchEmbed(nn.Module):
|
366 |
+
"""
|
367 |
+
Image to Patch Embedding.
|
368 |
+
"""
|
369 |
+
|
370 |
+
def __init__(
|
371 |
+
self,
|
372 |
+
kernel_size: Tuple[int, int] = (16, 16),
|
373 |
+
stride: Tuple[int, int] = (16, 16),
|
374 |
+
padding: Tuple[int, int] = (0, 0),
|
375 |
+
in_chans: int = 3,
|
376 |
+
embed_dim: int = 768,
|
377 |
+
) -> None:
|
378 |
+
"""
|
379 |
+
Args:
|
380 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
381 |
+
stride (Tuple): stride of the projection layer.
|
382 |
+
padding (Tuple): padding size of the projection layer.
|
383 |
+
in_chans (int): Number of input image channels.
|
384 |
+
embed_dim (int): Patch embedding dimension.
|
385 |
+
"""
|
386 |
+
super().__init__()
|
387 |
+
|
388 |
+
self.proj = nn.Conv2d(
|
389 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
390 |
+
)
|
391 |
+
|
392 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
393 |
+
x = self.proj(x)
|
394 |
+
# B C H W -> B H W C
|
395 |
+
x = x.permute(0, 2, 3, 1)
|
396 |
+
return x
|
modules/sam/modeling/mask_decoder.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from typing import List, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d
|
14 |
+
|
15 |
+
|
16 |
+
class MaskDecoder(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
*,
|
20 |
+
transformer_dim: int,
|
21 |
+
transformer: nn.Module,
|
22 |
+
num_multimask_outputs: int = 3,
|
23 |
+
activation: Type[nn.Module] = nn.GELU,
|
24 |
+
iou_head_depth: int = 3,
|
25 |
+
iou_head_hidden_dim: int = 256,
|
26 |
+
) -> None:
|
27 |
+
"""
|
28 |
+
Predicts masks given an image and prompt embeddings, using a
|
29 |
+
transformer architecture.
|
30 |
+
|
31 |
+
Arguments:
|
32 |
+
transformer_dim (int): the channel dimension of the transformer
|
33 |
+
transformer (nn.Module): the transformer used to predict masks
|
34 |
+
num_multimask_outputs (int): the number of masks to predict
|
35 |
+
when disambiguating masks
|
36 |
+
activation (nn.Module): the type of activation to use when
|
37 |
+
upscaling masks
|
38 |
+
iou_head_depth (int): the depth of the MLP used to predict
|
39 |
+
mask quality
|
40 |
+
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
41 |
+
used to predict mask quality
|
42 |
+
"""
|
43 |
+
super().__init__()
|
44 |
+
self.transformer_dim = transformer_dim
|
45 |
+
self.transformer = transformer
|
46 |
+
|
47 |
+
self.num_multimask_outputs = num_multimask_outputs
|
48 |
+
|
49 |
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
50 |
+
self.num_mask_tokens = num_multimask_outputs + 1
|
51 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
52 |
+
|
53 |
+
self.output_upscaling = nn.Sequential(
|
54 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
55 |
+
LayerNorm2d(transformer_dim // 4),
|
56 |
+
activation(),
|
57 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
58 |
+
activation(),
|
59 |
+
)
|
60 |
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
61 |
+
[
|
62 |
+
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
63 |
+
for i in range(self.num_mask_tokens)
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
self.iou_prediction_head = MLP(
|
68 |
+
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self,
|
73 |
+
image_embeddings: torch.Tensor,
|
74 |
+
image_pe: torch.Tensor,
|
75 |
+
sparse_prompt_embeddings: torch.Tensor,
|
76 |
+
dense_prompt_embeddings: torch.Tensor,
|
77 |
+
multimask_output: bool,
|
78 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
79 |
+
"""
|
80 |
+
Predict masks given image and prompt embeddings.
|
81 |
+
|
82 |
+
Arguments:
|
83 |
+
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
84 |
+
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
85 |
+
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
86 |
+
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
87 |
+
multimask_output (bool): Whether to return multiple masks or a single
|
88 |
+
mask.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
torch.Tensor: batched predicted masks
|
92 |
+
torch.Tensor: batched predictions of mask quality
|
93 |
+
"""
|
94 |
+
masks, iou_pred = self.predict_masks(
|
95 |
+
image_embeddings=image_embeddings,
|
96 |
+
image_pe=image_pe,
|
97 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
98 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
99 |
+
)
|
100 |
+
|
101 |
+
# Select the correct mask or masks for output
|
102 |
+
if multimask_output:
|
103 |
+
mask_slice = slice(1, None)
|
104 |
+
else:
|
105 |
+
mask_slice = slice(0, 1)
|
106 |
+
masks = masks[:, mask_slice, :, :]
|
107 |
+
iou_pred = iou_pred[:, mask_slice]
|
108 |
+
|
109 |
+
# Prepare output
|
110 |
+
return masks, iou_pred
|
111 |
+
|
112 |
+
def predict_masks(
|
113 |
+
self,
|
114 |
+
image_embeddings: torch.Tensor,
|
115 |
+
image_pe: torch.Tensor,
|
116 |
+
sparse_prompt_embeddings: torch.Tensor,
|
117 |
+
dense_prompt_embeddings: torch.Tensor,
|
118 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
119 |
+
"""Predicts masks. See 'forward' for more details."""
|
120 |
+
# Concatenate output tokens
|
121 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
122 |
+
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
123 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
124 |
+
|
125 |
+
# Expand per-image data in batch direction to be per-mask
|
126 |
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
127 |
+
src = src + dense_prompt_embeddings
|
128 |
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
129 |
+
b, c, h, w = src.shape
|
130 |
+
|
131 |
+
# Run the transformer
|
132 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
133 |
+
iou_token_out = hs[:, 0, :]
|
134 |
+
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
135 |
+
|
136 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
137 |
+
src = src.transpose(1, 2).view(b, c, h, w)
|
138 |
+
upscaled_embedding = self.output_upscaling(src)
|
139 |
+
hyper_in_list: List[torch.Tensor] = []
|
140 |
+
for i in range(self.num_mask_tokens):
|
141 |
+
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
142 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
143 |
+
b, c, h, w = upscaled_embedding.shape
|
144 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
145 |
+
|
146 |
+
# Generate mask quality predictions
|
147 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
148 |
+
|
149 |
+
return masks, iou_pred
|
150 |
+
|
151 |
+
def forward_batch(
|
152 |
+
self,
|
153 |
+
image_embeddings: torch.Tensor,
|
154 |
+
image_pe: torch.Tensor,
|
155 |
+
sparse_prompt_embeddings: torch.Tensor,
|
156 |
+
dense_prompt_embeddings: torch.Tensor,
|
157 |
+
multimask_output: bool,
|
158 |
+
res_img_feat=None,
|
159 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
160 |
+
"""
|
161 |
+
Predict masks given image and prompt embeddings.
|
162 |
+
|
163 |
+
Arguments:
|
164 |
+
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
165 |
+
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
166 |
+
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
167 |
+
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
168 |
+
multimask_output (bool): Whether to return multiple masks or a single
|
169 |
+
mask.
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
torch.Tensor: batched predicted masks
|
173 |
+
torch.Tensor: batched predictions of mask quality
|
174 |
+
"""
|
175 |
+
masks, iou_pred = self.predict_batch_masks(
|
176 |
+
image_embeddings=image_embeddings,
|
177 |
+
image_pe=image_pe,
|
178 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
179 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
180 |
+
res_img_feat=res_img_feat,
|
181 |
+
)
|
182 |
+
|
183 |
+
# Select the correct mask or masks for output
|
184 |
+
if multimask_output:
|
185 |
+
mask_slice = slice(1, None)
|
186 |
+
else:
|
187 |
+
mask_slice = slice(0, 1)
|
188 |
+
masks = masks[:, mask_slice, :, :]
|
189 |
+
iou_pred = iou_pred[:, mask_slice]
|
190 |
+
|
191 |
+
# Prepare output
|
192 |
+
return masks, iou_pred
|
193 |
+
|
194 |
+
def predict_batch_masks(
|
195 |
+
self,
|
196 |
+
image_embeddings: torch.Tensor,
|
197 |
+
image_pe: torch.Tensor,
|
198 |
+
sparse_prompt_embeddings: torch.Tensor,
|
199 |
+
dense_prompt_embeddings: torch.Tensor,
|
200 |
+
res_img_feat=None,
|
201 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
202 |
+
"""Predicts masks. See 'forward' for more details."""
|
203 |
+
# Concatenate output tokens
|
204 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
205 |
+
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
206 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
207 |
+
|
208 |
+
# Expand per-image data in batch direction to be per-mask
|
209 |
+
# src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
210 |
+
src = image_embeddings
|
211 |
+
src = src + dense_prompt_embeddings
|
212 |
+
# pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
213 |
+
pos_src = image_pe
|
214 |
+
b, c, h, w = src.shape
|
215 |
+
|
216 |
+
# Run the transformer
|
217 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
218 |
+
iou_token_out = hs[:, 0, :]
|
219 |
+
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
220 |
+
|
221 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
222 |
+
src = src.transpose(1, 2).view(b, c, h, w)
|
223 |
+
|
224 |
+
# TODO: add residual image feature
|
225 |
+
if res_img_feat is not None:
|
226 |
+
src = src + res_img_feat
|
227 |
+
upscaled_embedding = self.output_upscaling(src)
|
228 |
+
|
229 |
+
hyper_in_list: List[torch.Tensor] = []
|
230 |
+
for i in range(self.num_mask_tokens):
|
231 |
+
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
232 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
233 |
+
b, c, h, w = upscaled_embedding.shape
|
234 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
235 |
+
|
236 |
+
# Generate mask quality predictions
|
237 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
238 |
+
|
239 |
+
return masks, iou_pred
|
240 |
+
|
241 |
+
|
242 |
+
# Lightly adapted from
|
243 |
+
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
244 |
+
class MLP(nn.Module):
|
245 |
+
def __init__(
|
246 |
+
self,
|
247 |
+
input_dim: int,
|
248 |
+
hidden_dim: int,
|
249 |
+
output_dim: int,
|
250 |
+
num_layers: int,
|
251 |
+
sigmoid_output: bool = False,
|
252 |
+
) -> None:
|
253 |
+
super().__init__()
|
254 |
+
self.num_layers = num_layers
|
255 |
+
h = [hidden_dim] * (num_layers - 1)
|
256 |
+
self.layers = nn.ModuleList(
|
257 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
258 |
+
)
|
259 |
+
self.sigmoid_output = sigmoid_output
|
260 |
+
|
261 |
+
def forward(self, x):
|
262 |
+
for i, layer in enumerate(self.layers):
|
263 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
264 |
+
if self.sigmoid_output:
|
265 |
+
x = F.sigmoid(x)
|
266 |
+
return x
|
modules/sam/modeling/prompt_encoder.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from typing import Any, Optional, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d
|
14 |
+
|
15 |
+
|
16 |
+
class PromptEncoder(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
embed_dim: int,
|
20 |
+
image_embedding_size: Tuple[int, int],
|
21 |
+
input_image_size: Tuple[int, int],
|
22 |
+
mask_in_chans: int,
|
23 |
+
activation: Type[nn.Module] = nn.GELU,
|
24 |
+
) -> None:
|
25 |
+
"""
|
26 |
+
Encodes prompts for input to SAM's mask decoder.
|
27 |
+
|
28 |
+
Arguments:
|
29 |
+
embed_dim (int): The prompts' embedding dimension
|
30 |
+
image_embedding_size (tuple(int, int)): The spatial size of the
|
31 |
+
image embedding, as (H, W).
|
32 |
+
input_image_size (int): The padded size of the image as input
|
33 |
+
to the image encoder, as (H, W).
|
34 |
+
mask_in_chans (int): The number of hidden channels used for
|
35 |
+
encoding input masks.
|
36 |
+
activation (nn.Module): The activation to use when encoding
|
37 |
+
input masks.
|
38 |
+
"""
|
39 |
+
super().__init__()
|
40 |
+
self.embed_dim = embed_dim
|
41 |
+
self.input_image_size = input_image_size
|
42 |
+
self.image_embedding_size = image_embedding_size
|
43 |
+
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
44 |
+
|
45 |
+
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
46 |
+
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
47 |
+
self.point_embeddings = nn.ModuleList(point_embeddings)
|
48 |
+
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
49 |
+
|
50 |
+
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
51 |
+
self.mask_downscaling = nn.Sequential(
|
52 |
+
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
53 |
+
LayerNorm2d(mask_in_chans // 4),
|
54 |
+
activation(),
|
55 |
+
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
56 |
+
LayerNorm2d(mask_in_chans),
|
57 |
+
activation(),
|
58 |
+
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
59 |
+
)
|
60 |
+
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
61 |
+
|
62 |
+
def get_dense_pe(self) -> torch.Tensor:
|
63 |
+
"""
|
64 |
+
Returns the positional encoding used to encode point prompts,
|
65 |
+
applied to a dense set of points the shape of the image encoding.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
torch.Tensor: Positional encoding with shape
|
69 |
+
1x(embed_dim)x(embedding_h)x(embedding_w)
|
70 |
+
"""
|
71 |
+
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
72 |
+
|
73 |
+
def _embed_points(
|
74 |
+
self,
|
75 |
+
points: torch.Tensor,
|
76 |
+
labels: torch.Tensor,
|
77 |
+
pad: bool,
|
78 |
+
) -> torch.Tensor:
|
79 |
+
"""Embeds point prompts."""
|
80 |
+
points = points + 0.5 # Shift to center of pixel
|
81 |
+
if pad:
|
82 |
+
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
83 |
+
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
84 |
+
points = torch.cat([points, padding_point], dim=1)
|
85 |
+
labels = torch.cat([labels, padding_label], dim=1)
|
86 |
+
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
87 |
+
point_embedding[labels == -1] = 0.0
|
88 |
+
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
89 |
+
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
90 |
+
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
91 |
+
return point_embedding
|
92 |
+
|
93 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
94 |
+
"""Embeds box prompts."""
|
95 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
96 |
+
coords = boxes.reshape(-1, 2, 2)
|
97 |
+
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
98 |
+
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
99 |
+
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
100 |
+
return corner_embedding
|
101 |
+
|
102 |
+
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
103 |
+
"""Embeds mask inputs."""
|
104 |
+
mask_embedding = self.mask_downscaling(masks)
|
105 |
+
return mask_embedding
|
106 |
+
|
107 |
+
def _get_batch_size(
|
108 |
+
self,
|
109 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
110 |
+
boxes: Optional[torch.Tensor],
|
111 |
+
masks: Optional[torch.Tensor],
|
112 |
+
) -> int:
|
113 |
+
"""
|
114 |
+
Gets the batch size of the output given the batch size of the input prompts.
|
115 |
+
"""
|
116 |
+
if points is not None:
|
117 |
+
return points[0].shape[0]
|
118 |
+
elif boxes is not None:
|
119 |
+
return boxes.shape[0]
|
120 |
+
elif masks is not None:
|
121 |
+
return masks.shape[0]
|
122 |
+
else:
|
123 |
+
return 1
|
124 |
+
|
125 |
+
def _get_device(self) -> torch.device:
|
126 |
+
return self.point_embeddings[0].weight.device
|
127 |
+
|
128 |
+
def forward(
|
129 |
+
self,
|
130 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
131 |
+
boxes: Optional[torch.Tensor],
|
132 |
+
masks: Optional[torch.Tensor],
|
133 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
134 |
+
"""
|
135 |
+
Embeds different types of prompts, returning both sparse and dense
|
136 |
+
embeddings.
|
137 |
+
|
138 |
+
Arguments:
|
139 |
+
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
140 |
+
and labels to embed.
|
141 |
+
boxes (torch.Tensor or none): boxes to embed
|
142 |
+
masks (torch.Tensor or none): masks to embed
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
146 |
+
BxNx(embed_dim), where N is determined by the number of input points
|
147 |
+
and boxes.
|
148 |
+
torch.Tensor: dense embeddings for the masks, in the shape
|
149 |
+
Bx(embed_dim)x(embed_H)x(embed_W)
|
150 |
+
"""
|
151 |
+
bs = self._get_batch_size(points, boxes, masks)
|
152 |
+
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
153 |
+
if points is not None:
|
154 |
+
coords, labels = points
|
155 |
+
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
156 |
+
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
157 |
+
if boxes is not None:
|
158 |
+
box_embeddings = self._embed_boxes(boxes)
|
159 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
160 |
+
|
161 |
+
if masks is not None:
|
162 |
+
dense_embeddings = self._embed_masks(masks)
|
163 |
+
else:
|
164 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
165 |
+
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
166 |
+
)
|
167 |
+
|
168 |
+
return sparse_embeddings, dense_embeddings
|
169 |
+
|
170 |
+
|
171 |
+
class PositionEmbeddingRandom(nn.Module):
|
172 |
+
"""
|
173 |
+
Positional encoding using random spatial frequencies.
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
177 |
+
super().__init__()
|
178 |
+
if scale is None or scale <= 0.0:
|
179 |
+
scale = 1.0
|
180 |
+
self.register_buffer(
|
181 |
+
"positional_encoding_gaussian_matrix",
|
182 |
+
scale * torch.randn((2, num_pos_feats)),
|
183 |
+
)
|
184 |
+
|
185 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
186 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
187 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
188 |
+
coords = 2 * coords - 1
|
189 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
190 |
+
coords = 2 * np.pi * coords
|
191 |
+
# outputs d_1 x ... x d_n x C shape
|
192 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
193 |
+
|
194 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
195 |
+
"""Generate positional encoding for a grid of the specified size."""
|
196 |
+
h, w = size
|
197 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
198 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
199 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
200 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
201 |
+
y_embed = y_embed / h
|
202 |
+
x_embed = x_embed / w
|
203 |
+
|
204 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
205 |
+
return pe.permute(2, 0, 1) # C x H x W
|
206 |
+
|
207 |
+
def forward_with_coords(
|
208 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
209 |
+
) -> torch.Tensor:
|
210 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
211 |
+
coords = coords_input.clone()
|
212 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
213 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
214 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
modules/sam/modeling/sam.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from typing import Any, Dict, List, Tuple
|
12 |
+
|
13 |
+
from .image_encoder import ImageEncoderViT
|
14 |
+
from .mask_decoder import MaskDecoder
|
15 |
+
from .prompt_encoder import PromptEncoder
|
16 |
+
|
17 |
+
|
18 |
+
class Sam(nn.Module):
|
19 |
+
mask_threshold: float = 0.0
|
20 |
+
image_format: str = "RGB"
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
image_encoder: ImageEncoderViT,
|
25 |
+
prompt_encoder: PromptEncoder,
|
26 |
+
mask_decoder: MaskDecoder,
|
27 |
+
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
28 |
+
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
29 |
+
) -> None:
|
30 |
+
"""
|
31 |
+
SAM predicts object masks from an image and input prompts.
|
32 |
+
|
33 |
+
Arguments:
|
34 |
+
image_encoder (ImageEncoderViT): The backbone used to encode the
|
35 |
+
image into image embeddings that allow for efficient mask prediction.
|
36 |
+
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
37 |
+
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
38 |
+
and encoded prompts.
|
39 |
+
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
40 |
+
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
41 |
+
"""
|
42 |
+
super().__init__()
|
43 |
+
self.image_encoder = image_encoder
|
44 |
+
self.prompt_encoder = prompt_encoder
|
45 |
+
self.mask_decoder = mask_decoder
|
46 |
+
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
47 |
+
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
48 |
+
|
49 |
+
@property
|
50 |
+
def device(self) -> Any:
|
51 |
+
return self.pixel_mean.device
|
52 |
+
|
53 |
+
@torch.no_grad()
|
54 |
+
def forward(
|
55 |
+
self,
|
56 |
+
batched_input: List[Dict[str, Any]],
|
57 |
+
multimask_output: bool,
|
58 |
+
) -> List[Dict[str, torch.Tensor]]:
|
59 |
+
"""
|
60 |
+
Predicts masks end-to-end from provided images and prompts.
|
61 |
+
If prompts are not known in advance, using SamPredictor is
|
62 |
+
recommended over calling the model directly.
|
63 |
+
|
64 |
+
Arguments:
|
65 |
+
batched_input (list(dict)): A list over input images, each a
|
66 |
+
dictionary with the following keys. A prompt key can be
|
67 |
+
excluded if it is not present.
|
68 |
+
'image': The image as a torch tensor in 3xHxW format,
|
69 |
+
already transformed for input to the model.
|
70 |
+
'original_size': (tuple(int, int)) The original size of
|
71 |
+
the image before transformation, as (H, W).
|
72 |
+
'point_coords': (torch.Tensor) Batched point prompts for
|
73 |
+
this image, with shape BxNx2. Already transformed to the
|
74 |
+
input frame of the model.
|
75 |
+
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
76 |
+
with shape BxN.
|
77 |
+
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
78 |
+
Already transformed to the input frame of the model.
|
79 |
+
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
80 |
+
in the form Bx1xHxW.
|
81 |
+
multimask_output (bool): Whether the model should predict multiple
|
82 |
+
disambiguating masks, or return a single mask.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
(list(dict)): A list over input images, where each element is
|
86 |
+
as dictionary with the following keys.
|
87 |
+
'masks': (torch.Tensor) Batched binary mask predictions,
|
88 |
+
with shape BxCxHxW, where B is the number of input prompts,
|
89 |
+
C is determined by multimask_output, and (H, W) is the
|
90 |
+
original size of the image.
|
91 |
+
'iou_predictions': (torch.Tensor) The model's predictions
|
92 |
+
of mask quality, in shape BxC.
|
93 |
+
'low_res_logits': (torch.Tensor) Low resolution logits with
|
94 |
+
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
95 |
+
to subsequent iterations of prediction.
|
96 |
+
"""
|
97 |
+
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
|
98 |
+
image_embeddings = self.image_encoder(input_images)
|
99 |
+
|
100 |
+
outputs = []
|
101 |
+
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
102 |
+
if "point_coords" in image_record:
|
103 |
+
points = (image_record["point_coords"], image_record["point_labels"])
|
104 |
+
else:
|
105 |
+
points = None
|
106 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
107 |
+
points=points,
|
108 |
+
boxes=image_record.get("boxes", None),
|
109 |
+
masks=image_record.get("mask_inputs", None),
|
110 |
+
)
|
111 |
+
low_res_masks, iou_predictions = self.mask_decoder(
|
112 |
+
image_embeddings=curr_embedding.unsqueeze(0),
|
113 |
+
image_pe=self.prompt_encoder.get_dense_pe(),
|
114 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
115 |
+
dense_prompt_embeddings=dense_embeddings,
|
116 |
+
multimask_output=multimask_output,
|
117 |
+
)
|
118 |
+
masks = self.postprocess_masks(
|
119 |
+
low_res_masks,
|
120 |
+
input_size=image_record["image"].shape[-2:],
|
121 |
+
original_size=image_record["original_size"],
|
122 |
+
)
|
123 |
+
masks = masks > self.mask_threshold
|
124 |
+
outputs.append(
|
125 |
+
{
|
126 |
+
"masks": masks,
|
127 |
+
"iou_predictions": iou_predictions,
|
128 |
+
"low_res_logits": low_res_masks,
|
129 |
+
}
|
130 |
+
)
|
131 |
+
return outputs
|
132 |
+
|
133 |
+
def postprocess_masks(
|
134 |
+
self,
|
135 |
+
masks: torch.Tensor,
|
136 |
+
input_size: Tuple[int, ...],
|
137 |
+
original_size: Tuple[int, ...],
|
138 |
+
) -> torch.Tensor:
|
139 |
+
"""
|
140 |
+
Remove padding and upscale masks to the original image size.
|
141 |
+
|
142 |
+
Arguments:
|
143 |
+
masks (torch.Tensor): Batched masks from the mask_decoder,
|
144 |
+
in BxCxHxW format.
|
145 |
+
input_size (tuple(int, int)): The size of the image input to the
|
146 |
+
model, in (H, W) format. Used to remove padding.
|
147 |
+
original_size (tuple(int, int)): The original size of the image
|
148 |
+
before resizing for input to the model, in (H, W) format.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
152 |
+
is given by original_size.
|
153 |
+
"""
|
154 |
+
masks = F.interpolate(
|
155 |
+
masks,
|
156 |
+
(self.image_encoder.img_size, self.image_encoder.img_size),
|
157 |
+
mode="bilinear",
|
158 |
+
align_corners=False,
|
159 |
+
)
|
160 |
+
masks = masks[..., : input_size[0], : input_size[1]]
|
161 |
+
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
162 |
+
return masks
|
163 |
+
|
164 |
+
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
165 |
+
"""Normalize pixel values and pad to a square input."""
|
166 |
+
# Normalize colors
|
167 |
+
x = (x - self.pixel_mean) / self.pixel_std
|
168 |
+
|
169 |
+
# Pad
|
170 |
+
h, w = x.shape[-2:]
|
171 |
+
padh = self.image_encoder.img_size - h
|
172 |
+
padw = self.image_encoder.img_size - w
|
173 |
+
x = F.pad(x, (0, padw, 0, padh))
|
174 |
+
return x
|
modules/sam/modeling/transformer.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import Tensor, nn
|
9 |
+
|
10 |
+
import math
|
11 |
+
from typing import Tuple, Type
|
12 |
+
|
13 |
+
from .common import MLPBlock
|
14 |
+
|
15 |
+
|
16 |
+
class TwoWayTransformer(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
depth: int,
|
20 |
+
embedding_dim: int,
|
21 |
+
num_heads: int,
|
22 |
+
mlp_dim: int,
|
23 |
+
activation: Type[nn.Module] = nn.ReLU,
|
24 |
+
attention_downsample_rate: int = 2,
|
25 |
+
) -> None:
|
26 |
+
"""
|
27 |
+
A transformer decoder that attends to an input image using
|
28 |
+
queries whose positional embedding is supplied.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
depth (int): number of layers in the transformer
|
32 |
+
embedding_dim (int): the channel dimension for the input embeddings
|
33 |
+
num_heads (int): the number of heads for multihead attention. Must
|
34 |
+
divide embedding_dim
|
35 |
+
mlp_dim (int): the channel dimension internal to the MLP block
|
36 |
+
activation (nn.Module): the activation to use in the MLP block
|
37 |
+
"""
|
38 |
+
super().__init__()
|
39 |
+
self.depth = depth
|
40 |
+
self.embedding_dim = embedding_dim
|
41 |
+
self.num_heads = num_heads
|
42 |
+
self.mlp_dim = mlp_dim
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i in range(depth):
|
46 |
+
self.layers.append(
|
47 |
+
TwoWayAttentionBlock(
|
48 |
+
embedding_dim=embedding_dim,
|
49 |
+
num_heads=num_heads,
|
50 |
+
mlp_dim=mlp_dim,
|
51 |
+
activation=activation,
|
52 |
+
attention_downsample_rate=attention_downsample_rate,
|
53 |
+
skip_first_layer_pe=(i == 0),
|
54 |
+
)
|
55 |
+
)
|
56 |
+
|
57 |
+
self.final_attn_token_to_image = Attention(
|
58 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
59 |
+
)
|
60 |
+
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
image_embedding: Tensor,
|
65 |
+
image_pe: Tensor,
|
66 |
+
point_embedding: Tensor,
|
67 |
+
) -> Tuple[Tensor, Tensor]:
|
68 |
+
"""
|
69 |
+
Args:
|
70 |
+
image_embedding (torch.Tensor): image to attend to. Should be shape
|
71 |
+
B x embedding_dim x h x w for any h and w.
|
72 |
+
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
73 |
+
have the same shape as image_embedding.
|
74 |
+
point_embedding (torch.Tensor): the embedding to add to the query points.
|
75 |
+
Must have shape B x N_points x embedding_dim for any N_points.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
torch.Tensor: the processed point_embedding
|
79 |
+
torch.Tensor: the processed image_embedding
|
80 |
+
"""
|
81 |
+
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
82 |
+
bs, c, h, w = image_embedding.shape
|
83 |
+
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
84 |
+
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
85 |
+
|
86 |
+
# Prepare queries
|
87 |
+
queries = point_embedding
|
88 |
+
keys = image_embedding
|
89 |
+
|
90 |
+
# Apply transformer blocks and final layernorm
|
91 |
+
for layer in self.layers:
|
92 |
+
queries, keys = layer(
|
93 |
+
queries=queries,
|
94 |
+
keys=keys,
|
95 |
+
query_pe=point_embedding,
|
96 |
+
key_pe=image_pe,
|
97 |
+
)
|
98 |
+
|
99 |
+
# Apply the final attention layer from the points to the image
|
100 |
+
q = queries + point_embedding
|
101 |
+
k = keys + image_pe
|
102 |
+
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
103 |
+
queries = queries + attn_out
|
104 |
+
queries = self.norm_final_attn(queries)
|
105 |
+
|
106 |
+
return queries, keys
|
107 |
+
|
108 |
+
|
109 |
+
class TwoWayAttentionBlock(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
embedding_dim: int,
|
113 |
+
num_heads: int,
|
114 |
+
mlp_dim: int = 2048,
|
115 |
+
activation: Type[nn.Module] = nn.ReLU,
|
116 |
+
attention_downsample_rate: int = 2,
|
117 |
+
skip_first_layer_pe: bool = False,
|
118 |
+
) -> None:
|
119 |
+
"""
|
120 |
+
A transformer block with four layers: (1) self-attention of sparse
|
121 |
+
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
122 |
+
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
123 |
+
inputs.
|
124 |
+
|
125 |
+
Arguments:
|
126 |
+
embedding_dim (int): the channel dimension of the embeddings
|
127 |
+
num_heads (int): the number of heads in the attention layers
|
128 |
+
mlp_dim (int): the hidden dimension of the mlp block
|
129 |
+
activation (nn.Module): the activation of the mlp block
|
130 |
+
skip_first_layer_pe (bool): skip the PE on the first layer
|
131 |
+
"""
|
132 |
+
super().__init__()
|
133 |
+
self.self_attn = Attention(embedding_dim, num_heads)
|
134 |
+
self.norm1 = nn.LayerNorm(embedding_dim)
|
135 |
+
|
136 |
+
self.cross_attn_token_to_image = Attention(
|
137 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
138 |
+
)
|
139 |
+
self.norm2 = nn.LayerNorm(embedding_dim)
|
140 |
+
|
141 |
+
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
142 |
+
self.norm3 = nn.LayerNorm(embedding_dim)
|
143 |
+
|
144 |
+
self.norm4 = nn.LayerNorm(embedding_dim)
|
145 |
+
self.cross_attn_image_to_token = Attention(
|
146 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
147 |
+
)
|
148 |
+
|
149 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
150 |
+
|
151 |
+
def forward(
|
152 |
+
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
153 |
+
) -> Tuple[Tensor, Tensor]:
|
154 |
+
# Self attention block
|
155 |
+
if self.skip_first_layer_pe:
|
156 |
+
queries = self.self_attn(q=queries, k=queries, v=queries)
|
157 |
+
else:
|
158 |
+
q = queries + query_pe
|
159 |
+
attn_out = self.self_attn(q=q, k=q, v=queries)
|
160 |
+
queries = queries + attn_out
|
161 |
+
queries = self.norm1(queries)
|
162 |
+
|
163 |
+
# Cross attention block, tokens attending to image embedding
|
164 |
+
q = queries + query_pe
|
165 |
+
k = keys + key_pe
|
166 |
+
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
167 |
+
queries = queries + attn_out
|
168 |
+
queries = self.norm2(queries)
|
169 |
+
|
170 |
+
# MLP block
|
171 |
+
mlp_out = self.mlp(queries)
|
172 |
+
queries = queries + mlp_out
|
173 |
+
queries = self.norm3(queries)
|
174 |
+
|
175 |
+
# Cross attention block, image embedding attending to tokens
|
176 |
+
q = queries + query_pe
|
177 |
+
k = keys + key_pe
|
178 |
+
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
179 |
+
keys = keys + attn_out
|
180 |
+
keys = self.norm4(keys)
|
181 |
+
|
182 |
+
return queries, keys
|
183 |
+
|
184 |
+
|
185 |
+
class Attention(nn.Module):
|
186 |
+
"""
|
187 |
+
An attention layer that allows for downscaling the size of the embedding
|
188 |
+
after projection to queries, keys, and values.
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
embedding_dim: int,
|
194 |
+
num_heads: int,
|
195 |
+
downsample_rate: int = 1,
|
196 |
+
) -> None:
|
197 |
+
super().__init__()
|
198 |
+
self.embedding_dim = embedding_dim
|
199 |
+
self.internal_dim = embedding_dim // downsample_rate
|
200 |
+
self.num_heads = num_heads
|
201 |
+
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
202 |
+
|
203 |
+
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
204 |
+
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
205 |
+
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
206 |
+
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
207 |
+
|
208 |
+
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
209 |
+
b, n, c = x.shape
|
210 |
+
x = x.reshape(b, n, num_heads, c // num_heads)
|
211 |
+
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
212 |
+
|
213 |
+
def _recombine_heads(self, x: Tensor) -> Tensor:
|
214 |
+
b, n_heads, n_tokens, c_per_head = x.shape
|
215 |
+
x = x.transpose(1, 2)
|
216 |
+
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
217 |
+
|
218 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
219 |
+
# Input projections
|
220 |
+
q = self.q_proj(q)
|
221 |
+
k = self.k_proj(k)
|
222 |
+
v = self.v_proj(v)
|
223 |
+
|
224 |
+
# Separate into heads
|
225 |
+
q = self._separate_heads(q, self.num_heads)
|
226 |
+
k = self._separate_heads(k, self.num_heads)
|
227 |
+
v = self._separate_heads(v, self.num_heads)
|
228 |
+
|
229 |
+
# Attention
|
230 |
+
_, _, _, c_per_head = q.shape
|
231 |
+
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
232 |
+
attn = attn / math.sqrt(c_per_head)
|
233 |
+
attn = torch.softmax(attn, dim=-1)
|
234 |
+
|
235 |
+
# Get output
|
236 |
+
out = attn @ v
|
237 |
+
out = self._recombine_heads(out)
|
238 |
+
out = self.out_proj(out)
|
239 |
+
|
240 |
+
return out
|
modules/sam/notebooks/automatic_mask_generator_example.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules/sam/notebooks/images/dog.jpg
ADDED
![]() |
modules/sam/notebooks/images/groceries.jpg
ADDED
![]() |
modules/sam/notebooks/images/truck.jpg
ADDED
![]() |
modules/sam/notebooks/onnx_model_example.ipynb
ADDED
@@ -0,0 +1,774 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "901c8ef3",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# Copyright (c) Meta Platforms, Inc. and affiliates."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"id": "1662bb7c",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"# Produces masks from prompts using an ONNX model"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "markdown",
|
23 |
+
"id": "7fcc21a0",
|
24 |
+
"metadata": {},
|
25 |
+
"source": [
|
26 |
+
"SAM's prompt encoder and mask decoder are very lightweight, which allows for efficient computation of a mask given user input. This notebook shows an example of how to export and use this lightweight component of the model in ONNX format, allowing it to run on a variety of platforms that support an ONNX runtime."
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 4,
|
32 |
+
"id": "86daff77",
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [
|
35 |
+
{
|
36 |
+
"data": {
|
37 |
+
"text/html": [
|
38 |
+
"\n",
|
39 |
+
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
|
40 |
+
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
|
41 |
+
"</a>\n"
|
42 |
+
],
|
43 |
+
"text/plain": [
|
44 |
+
"<IPython.core.display.HTML object>"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "display_data"
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"from IPython.display import display, HTML\n",
|
53 |
+
"display(HTML(\n",
|
54 |
+
"\"\"\"\n",
|
55 |
+
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
|
56 |
+
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
|
57 |
+
"</a>\n",
|
58 |
+
"\"\"\"\n",
|
59 |
+
"))"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "markdown",
|
64 |
+
"id": "55ae4e00",
|
65 |
+
"metadata": {},
|
66 |
+
"source": [
|
67 |
+
"## Environment Set-up"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"id": "109a5cc2",
|
73 |
+
"metadata": {},
|
74 |
+
"source": [
|
75 |
+
"If running locally using jupyter, first install `segment_anything` in your environment using the [installation instructions](https://github.com/facebookresearch/segment-anything#installation) in the repository. The latest stable versions of PyTorch and ONNX are recommended for this notebook. If running from Google Colab, set `using_colab=True` below and run the cell. In Colab, be sure to select 'GPU' under 'Edit'->'Notebook Settings'->'Hardware accelerator'."
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 5,
|
81 |
+
"id": "39b99fc4",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"using_colab = False"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 6,
|
91 |
+
"id": "296a69be",
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [],
|
94 |
+
"source": [
|
95 |
+
"if using_colab:\n",
|
96 |
+
" import torch\n",
|
97 |
+
" import torchvision\n",
|
98 |
+
" print(\"PyTorch version:\", torch.__version__)\n",
|
99 |
+
" print(\"Torchvision version:\", torchvision.__version__)\n",
|
100 |
+
" print(\"CUDA is available:\", torch.cuda.is_available())\n",
|
101 |
+
" import sys\n",
|
102 |
+
" !{sys.executable} -m pip install opencv-python matplotlib onnx onnxruntime\n",
|
103 |
+
" !{sys.executable} -m pip install 'git+https://github.com/facebookresearch/segment-anything.git'\n",
|
104 |
+
" \n",
|
105 |
+
" !mkdir images\n",
|
106 |
+
" !wget -P images https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg\n",
|
107 |
+
" \n",
|
108 |
+
" !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "markdown",
|
113 |
+
"id": "dc4a58be",
|
114 |
+
"metadata": {},
|
115 |
+
"source": [
|
116 |
+
"## Set-up"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"id": "42396e8d",
|
122 |
+
"metadata": {},
|
123 |
+
"source": [
|
124 |
+
"Note that this notebook requires both the `onnx` and `onnxruntime` optional dependencies, in addition to `opencv-python` and `matplotlib` for visualization."
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": null,
|
130 |
+
"id": "2c712610",
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"import torch\n",
|
135 |
+
"import numpy as np\n",
|
136 |
+
"import cv2\n",
|
137 |
+
"import matplotlib.pyplot as plt\n",
|
138 |
+
"from segment_anything import sam_model_registry, SamPredictor\n",
|
139 |
+
"from segment_anything.utils.onnx import SamOnnxModel\n",
|
140 |
+
"\n",
|
141 |
+
"import onnxruntime\n",
|
142 |
+
"from onnxruntime.quantization import QuantType\n",
|
143 |
+
"from onnxruntime.quantization.quantize import quantize_dynamic"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"id": "f29441b9",
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"def show_mask(mask, ax):\n",
|
154 |
+
" color = np.array([30/255, 144/255, 255/255, 0.6])\n",
|
155 |
+
" h, w = mask.shape[-2:]\n",
|
156 |
+
" mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n",
|
157 |
+
" ax.imshow(mask_image)\n",
|
158 |
+
" \n",
|
159 |
+
"def show_points(coords, labels, ax, marker_size=375):\n",
|
160 |
+
" pos_points = coords[labels==1]\n",
|
161 |
+
" neg_points = coords[labels==0]\n",
|
162 |
+
" ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)\n",
|
163 |
+
" ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) \n",
|
164 |
+
" \n",
|
165 |
+
"def show_box(box, ax):\n",
|
166 |
+
" x0, y0 = box[0], box[1]\n",
|
167 |
+
" w, h = box[2] - box[0], box[3] - box[1]\n",
|
168 |
+
" ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) "
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "markdown",
|
173 |
+
"id": "bd0f6b2b",
|
174 |
+
"metadata": {},
|
175 |
+
"source": [
|
176 |
+
"## Export an ONNX model"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "markdown",
|
181 |
+
"id": "1540f719",
|
182 |
+
"metadata": {},
|
183 |
+
"source": [
|
184 |
+
"Set the path below to a SAM model checkpoint, then load the model. This will be needed to both export the model and to calculate embeddings for the model."
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": null,
|
190 |
+
"id": "76fc53f4",
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [],
|
193 |
+
"source": [
|
194 |
+
"checkpoint = \"sam_vit_h_4b8939.pth\"\n",
|
195 |
+
"model_type = \"vit_h\""
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"id": "11bfc8aa",
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"sam = sam_model_registry[model_type](checkpoint=checkpoint)"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "markdown",
|
210 |
+
"id": "450c089c",
|
211 |
+
"metadata": {},
|
212 |
+
"source": [
|
213 |
+
"The script `segment-anything/scripts/export_onnx_model.py` can be used to export the necessary portion of SAM. Alternatively, run the following code to export an ONNX model. If you have already exported a model, set the path below and skip to the next section. Assure that the exported ONNX model aligns with the checkpoint and model type set above. This notebook expects the model was exported with the parameter `return_single_mask=True`."
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"id": "38a8add8",
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": [
|
223 |
+
"onnx_model_path = None # Set to use an already exported model, then skip to the next section."
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": null,
|
229 |
+
"id": "7da638ba",
|
230 |
+
"metadata": {
|
231 |
+
"scrolled": false
|
232 |
+
},
|
233 |
+
"outputs": [],
|
234 |
+
"source": [
|
235 |
+
"import warnings\n",
|
236 |
+
"\n",
|
237 |
+
"onnx_model_path = \"sam_onnx_example.onnx\"\n",
|
238 |
+
"\n",
|
239 |
+
"onnx_model = SamOnnxModel(sam, return_single_mask=True)\n",
|
240 |
+
"\n",
|
241 |
+
"dynamic_axes = {\n",
|
242 |
+
" \"point_coords\": {1: \"num_points\"},\n",
|
243 |
+
" \"point_labels\": {1: \"num_points\"},\n",
|
244 |
+
"}\n",
|
245 |
+
"\n",
|
246 |
+
"embed_dim = sam.prompt_encoder.embed_dim\n",
|
247 |
+
"embed_size = sam.prompt_encoder.image_embedding_size\n",
|
248 |
+
"mask_input_size = [4 * x for x in embed_size]\n",
|
249 |
+
"dummy_inputs = {\n",
|
250 |
+
" \"image_embeddings\": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),\n",
|
251 |
+
" \"point_coords\": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),\n",
|
252 |
+
" \"point_labels\": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),\n",
|
253 |
+
" \"mask_input\": torch.randn(1, 1, *mask_input_size, dtype=torch.float),\n",
|
254 |
+
" \"has_mask_input\": torch.tensor([1], dtype=torch.float),\n",
|
255 |
+
" \"orig_im_size\": torch.tensor([1500, 2250], dtype=torch.float),\n",
|
256 |
+
"}\n",
|
257 |
+
"output_names = [\"masks\", \"iou_predictions\", \"low_res_masks\"]\n",
|
258 |
+
"\n",
|
259 |
+
"with warnings.catch_warnings():\n",
|
260 |
+
" warnings.filterwarnings(\"ignore\", category=torch.jit.TracerWarning)\n",
|
261 |
+
" warnings.filterwarnings(\"ignore\", category=UserWarning)\n",
|
262 |
+
" with open(onnx_model_path, \"wb\") as f:\n",
|
263 |
+
" torch.onnx.export(\n",
|
264 |
+
" onnx_model,\n",
|
265 |
+
" tuple(dummy_inputs.values()),\n",
|
266 |
+
" f,\n",
|
267 |
+
" export_params=True,\n",
|
268 |
+
" verbose=False,\n",
|
269 |
+
" opset_version=17,\n",
|
270 |
+
" do_constant_folding=True,\n",
|
271 |
+
" input_names=list(dummy_inputs.keys()),\n",
|
272 |
+
" output_names=output_names,\n",
|
273 |
+
" dynamic_axes=dynamic_axes,\n",
|
274 |
+
" ) "
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "markdown",
|
279 |
+
"id": "c450cf1a",
|
280 |
+
"metadata": {},
|
281 |
+
"source": [
|
282 |
+
"If desired, the model can additionally be quantized and optimized. We find this improves web runtime significantly for negligible change in qualitative performance. Run the next cell to quantize the model, or skip to the next section otherwise."
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": null,
|
288 |
+
"id": "235d39fe",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [],
|
291 |
+
"source": [
|
292 |
+
"onnx_model_quantized_path = \"sam_onnx_quantized_example.onnx\"\n",
|
293 |
+
"quantize_dynamic(\n",
|
294 |
+
" model_input=onnx_model_path,\n",
|
295 |
+
" model_output=onnx_model_quantized_path,\n",
|
296 |
+
" optimize_model=True,\n",
|
297 |
+
" per_channel=False,\n",
|
298 |
+
" reduce_range=False,\n",
|
299 |
+
" weight_type=QuantType.QUInt8,\n",
|
300 |
+
")\n",
|
301 |
+
"onnx_model_path = onnx_model_quantized_path"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "markdown",
|
306 |
+
"id": "927a928b",
|
307 |
+
"metadata": {},
|
308 |
+
"source": [
|
309 |
+
"## Example Image"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"cell_type": "code",
|
314 |
+
"execution_count": null,
|
315 |
+
"id": "6be6eb55",
|
316 |
+
"metadata": {},
|
317 |
+
"outputs": [],
|
318 |
+
"source": [
|
319 |
+
"image = cv2.imread('images/truck.jpg')\n",
|
320 |
+
"image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"cell_type": "code",
|
325 |
+
"execution_count": null,
|
326 |
+
"id": "b7e9a27a",
|
327 |
+
"metadata": {},
|
328 |
+
"outputs": [],
|
329 |
+
"source": [
|
330 |
+
"plt.figure(figsize=(10,10))\n",
|
331 |
+
"plt.imshow(image)\n",
|
332 |
+
"plt.axis('on')\n",
|
333 |
+
"plt.show()"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "markdown",
|
338 |
+
"id": "027b177b",
|
339 |
+
"metadata": {},
|
340 |
+
"source": [
|
341 |
+
"## Using an ONNX model"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "markdown",
|
346 |
+
"id": "778d4593",
|
347 |
+
"metadata": {},
|
348 |
+
"source": [
|
349 |
+
"Here as an example, we use `onnxruntime` in python on CPU to execute the ONNX model. However, any platform that supports an ONNX runtime could be used in principle. Launch the runtime session below:"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": null,
|
355 |
+
"id": "9689b1bf",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": [
|
359 |
+
"ort_session = onnxruntime.InferenceSession(onnx_model_path)"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "markdown",
|
364 |
+
"id": "7708ead6",
|
365 |
+
"metadata": {},
|
366 |
+
"source": [
|
367 |
+
"To use the ONNX model, the image must first be pre-processed using the SAM image encoder. This is a heavier weight process best performed on GPU. SamPredictor can be used as normal, then `.get_image_embedding()` will retreive the intermediate features."
|
368 |
+
]
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"cell_type": "code",
|
372 |
+
"execution_count": null,
|
373 |
+
"id": "26e067b4",
|
374 |
+
"metadata": {},
|
375 |
+
"outputs": [],
|
376 |
+
"source": [
|
377 |
+
"sam.to(device='cuda')\n",
|
378 |
+
"predictor = SamPredictor(sam)"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "code",
|
383 |
+
"execution_count": null,
|
384 |
+
"id": "7ad3f0d6",
|
385 |
+
"metadata": {},
|
386 |
+
"outputs": [],
|
387 |
+
"source": [
|
388 |
+
"predictor.set_image(image)"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"execution_count": null,
|
394 |
+
"id": "8a6f0f07",
|
395 |
+
"metadata": {},
|
396 |
+
"outputs": [],
|
397 |
+
"source": [
|
398 |
+
"image_embedding = predictor.get_image_embedding().cpu().numpy()"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"cell_type": "code",
|
403 |
+
"execution_count": null,
|
404 |
+
"id": "5e112f33",
|
405 |
+
"metadata": {},
|
406 |
+
"outputs": [],
|
407 |
+
"source": [
|
408 |
+
"image_embedding.shape"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "markdown",
|
413 |
+
"id": "6337b654",
|
414 |
+
"metadata": {},
|
415 |
+
"source": [
|
416 |
+
"The ONNX model has a different input signature than `SamPredictor.predict`. The following inputs must all be supplied. Note the special cases for both point and mask inputs. All inputs are `np.float32`.\n",
|
417 |
+
"* `image_embeddings`: The image embedding from `predictor.get_image_embedding()`. Has a batch index of length 1.\n",
|
418 |
+
"* `point_coords`: Coordinates of sparse input prompts, corresponding to both point inputs and box inputs. Boxes are encoded using two points, one for the top-left corner and one for the bottom-right corner. *Coordinates must already be transformed to long-side 1024.* Has a batch index of length 1.\n",
|
419 |
+
"* `point_labels`: Labels for the sparse input prompts. 0 is a negative input point, 1 is a positive input point, 2 is a top-left box corner, 3 is a bottom-right box corner, and -1 is a padding point. *If there is no box input, a single padding point with label -1 and coordinates (0.0, 0.0) should be concatenated.*\n",
|
420 |
+
"* `mask_input`: A mask input to the model with shape 1x1x256x256. This must be supplied even if there is no mask input. In this case, it can just be zeros.\n",
|
421 |
+
"* `has_mask_input`: An indicator for the mask input. 1 indicates a mask input, 0 indicates no mask input.\n",
|
422 |
+
"* `orig_im_size`: The size of the input image in (H,W) format, before any transformation. \n",
|
423 |
+
"\n",
|
424 |
+
"Additionally, the ONNX model does not threshold the output mask logits. To obtain a binary mask, threshold at `sam.mask_threshold` (equal to 0.0)."
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"cell_type": "markdown",
|
429 |
+
"id": "bf5a9f55",
|
430 |
+
"metadata": {},
|
431 |
+
"source": [
|
432 |
+
"### Example point input"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": null,
|
438 |
+
"id": "1c0deef0",
|
439 |
+
"metadata": {},
|
440 |
+
"outputs": [],
|
441 |
+
"source": [
|
442 |
+
"input_point = np.array([[500, 375]])\n",
|
443 |
+
"input_label = np.array([1])"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "markdown",
|
448 |
+
"id": "7256394c",
|
449 |
+
"metadata": {},
|
450 |
+
"source": [
|
451 |
+
"Add a batch index, concatenate a padding point, and transform."
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": null,
|
457 |
+
"id": "4f69903e",
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [],
|
460 |
+
"source": [
|
461 |
+
"onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
|
462 |
+
"onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
|
463 |
+
"\n",
|
464 |
+
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)\n"
|
465 |
+
]
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"cell_type": "markdown",
|
469 |
+
"id": "b188dc53",
|
470 |
+
"metadata": {},
|
471 |
+
"source": [
|
472 |
+
"Create an empty mask input and an indicator for no mask."
|
473 |
+
]
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"cell_type": "code",
|
477 |
+
"execution_count": null,
|
478 |
+
"id": "5cb52bcf",
|
479 |
+
"metadata": {},
|
480 |
+
"outputs": [],
|
481 |
+
"source": [
|
482 |
+
"onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
|
483 |
+
"onnx_has_mask_input = np.zeros(1, dtype=np.float32)"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "markdown",
|
488 |
+
"id": "a99c2cc5",
|
489 |
+
"metadata": {},
|
490 |
+
"source": [
|
491 |
+
"Package the inputs to run in the onnx model"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": null,
|
497 |
+
"id": "b1d7ea11",
|
498 |
+
"metadata": {},
|
499 |
+
"outputs": [],
|
500 |
+
"source": [
|
501 |
+
"ort_inputs = {\n",
|
502 |
+
" \"image_embeddings\": image_embedding,\n",
|
503 |
+
" \"point_coords\": onnx_coord,\n",
|
504 |
+
" \"point_labels\": onnx_label,\n",
|
505 |
+
" \"mask_input\": onnx_mask_input,\n",
|
506 |
+
" \"has_mask_input\": onnx_has_mask_input,\n",
|
507 |
+
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
|
508 |
+
"}"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"cell_type": "markdown",
|
513 |
+
"id": "4b6409c9",
|
514 |
+
"metadata": {},
|
515 |
+
"source": [
|
516 |
+
"Predict a mask and threshold it."
|
517 |
+
]
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"cell_type": "code",
|
521 |
+
"execution_count": null,
|
522 |
+
"id": "dc4cc082",
|
523 |
+
"metadata": {
|
524 |
+
"scrolled": false
|
525 |
+
},
|
526 |
+
"outputs": [],
|
527 |
+
"source": [
|
528 |
+
"masks, _, low_res_logits = ort_session.run(None, ort_inputs)\n",
|
529 |
+
"masks = masks > predictor.model.mask_threshold"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": null,
|
535 |
+
"id": "d778a8fb",
|
536 |
+
"metadata": {},
|
537 |
+
"outputs": [],
|
538 |
+
"source": [
|
539 |
+
"masks.shape"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"cell_type": "code",
|
544 |
+
"execution_count": null,
|
545 |
+
"id": "badb1175",
|
546 |
+
"metadata": {},
|
547 |
+
"outputs": [],
|
548 |
+
"source": [
|
549 |
+
"plt.figure(figsize=(10,10))\n",
|
550 |
+
"plt.imshow(image)\n",
|
551 |
+
"show_mask(masks, plt.gca())\n",
|
552 |
+
"show_points(input_point, input_label, plt.gca())\n",
|
553 |
+
"plt.axis('off')\n",
|
554 |
+
"plt.show() "
|
555 |
+
]
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"cell_type": "markdown",
|
559 |
+
"id": "1f1d4d15",
|
560 |
+
"metadata": {},
|
561 |
+
"source": [
|
562 |
+
"### Example mask input"
|
563 |
+
]
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"cell_type": "code",
|
567 |
+
"execution_count": null,
|
568 |
+
"id": "b319da82",
|
569 |
+
"metadata": {},
|
570 |
+
"outputs": [],
|
571 |
+
"source": [
|
572 |
+
"input_point = np.array([[500, 375], [1125, 625]])\n",
|
573 |
+
"input_label = np.array([1, 1])\n",
|
574 |
+
"\n",
|
575 |
+
"# Use the mask output from the previous run. It is already in the correct form for input to the ONNX model.\n",
|
576 |
+
"onnx_mask_input = low_res_logits"
|
577 |
+
]
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "markdown",
|
581 |
+
"id": "b1823b37",
|
582 |
+
"metadata": {},
|
583 |
+
"source": [
|
584 |
+
"Transform the points as in the previous example."
|
585 |
+
]
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"cell_type": "code",
|
589 |
+
"execution_count": null,
|
590 |
+
"id": "8885130f",
|
591 |
+
"metadata": {},
|
592 |
+
"outputs": [],
|
593 |
+
"source": [
|
594 |
+
"onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
|
595 |
+
"onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
|
596 |
+
"\n",
|
597 |
+
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
|
598 |
+
]
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"cell_type": "markdown",
|
602 |
+
"id": "28e47b69",
|
603 |
+
"metadata": {},
|
604 |
+
"source": [
|
605 |
+
"The `has_mask_input` indicator is now 1."
|
606 |
+
]
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"cell_type": "code",
|
610 |
+
"execution_count": null,
|
611 |
+
"id": "3ab4483a",
|
612 |
+
"metadata": {},
|
613 |
+
"outputs": [],
|
614 |
+
"source": [
|
615 |
+
"onnx_has_mask_input = np.ones(1, dtype=np.float32)"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"cell_type": "markdown",
|
620 |
+
"id": "d3781955",
|
621 |
+
"metadata": {},
|
622 |
+
"source": [
|
623 |
+
"Package inputs, then predict and threshold the mask."
|
624 |
+
]
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"cell_type": "code",
|
628 |
+
"execution_count": null,
|
629 |
+
"id": "0c1ec096",
|
630 |
+
"metadata": {},
|
631 |
+
"outputs": [],
|
632 |
+
"source": [
|
633 |
+
"ort_inputs = {\n",
|
634 |
+
" \"image_embeddings\": image_embedding,\n",
|
635 |
+
" \"point_coords\": onnx_coord,\n",
|
636 |
+
" \"point_labels\": onnx_label,\n",
|
637 |
+
" \"mask_input\": onnx_mask_input,\n",
|
638 |
+
" \"has_mask_input\": onnx_has_mask_input,\n",
|
639 |
+
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
|
640 |
+
"}\n",
|
641 |
+
"\n",
|
642 |
+
"masks, _, _ = ort_session.run(None, ort_inputs)\n",
|
643 |
+
"masks = masks > predictor.model.mask_threshold"
|
644 |
+
]
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"cell_type": "code",
|
648 |
+
"execution_count": null,
|
649 |
+
"id": "1e36554b",
|
650 |
+
"metadata": {},
|
651 |
+
"outputs": [],
|
652 |
+
"source": [
|
653 |
+
"plt.figure(figsize=(10,10))\n",
|
654 |
+
"plt.imshow(image)\n",
|
655 |
+
"show_mask(masks, plt.gca())\n",
|
656 |
+
"show_points(input_point, input_label, plt.gca())\n",
|
657 |
+
"plt.axis('off')\n",
|
658 |
+
"plt.show() "
|
659 |
+
]
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"cell_type": "markdown",
|
663 |
+
"id": "2ef211d0",
|
664 |
+
"metadata": {},
|
665 |
+
"source": [
|
666 |
+
"### Example box and point input"
|
667 |
+
]
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"cell_type": "code",
|
671 |
+
"execution_count": null,
|
672 |
+
"id": "51e58d2e",
|
673 |
+
"metadata": {},
|
674 |
+
"outputs": [],
|
675 |
+
"source": [
|
676 |
+
"input_box = np.array([425, 600, 700, 875])\n",
|
677 |
+
"input_point = np.array([[575, 750]])\n",
|
678 |
+
"input_label = np.array([0])"
|
679 |
+
]
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"cell_type": "markdown",
|
683 |
+
"id": "6e119dcb",
|
684 |
+
"metadata": {},
|
685 |
+
"source": [
|
686 |
+
"Add a batch index, concatenate a box and point inputs, add the appropriate labels for the box corners, and transform. There is no padding point since the input includes a box input."
|
687 |
+
]
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"cell_type": "code",
|
691 |
+
"execution_count": null,
|
692 |
+
"id": "bfbe4911",
|
693 |
+
"metadata": {},
|
694 |
+
"outputs": [],
|
695 |
+
"source": [
|
696 |
+
"onnx_box_coords = input_box.reshape(2, 2)\n",
|
697 |
+
"onnx_box_labels = np.array([2,3])\n",
|
698 |
+
"\n",
|
699 |
+
"onnx_coord = np.concatenate([input_point, onnx_box_coords], axis=0)[None, :, :]\n",
|
700 |
+
"onnx_label = np.concatenate([input_label, onnx_box_labels], axis=0)[None, :].astype(np.float32)\n",
|
701 |
+
"\n",
|
702 |
+
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
|
703 |
+
]
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"cell_type": "markdown",
|
707 |
+
"id": "65edabd2",
|
708 |
+
"metadata": {},
|
709 |
+
"source": [
|
710 |
+
"Package inputs, then predict and threshold the mask."
|
711 |
+
]
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"cell_type": "code",
|
715 |
+
"execution_count": null,
|
716 |
+
"id": "2abfba56",
|
717 |
+
"metadata": {},
|
718 |
+
"outputs": [],
|
719 |
+
"source": [
|
720 |
+
"onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
|
721 |
+
"onnx_has_mask_input = np.zeros(1, dtype=np.float32)\n",
|
722 |
+
"\n",
|
723 |
+
"ort_inputs = {\n",
|
724 |
+
" \"image_embeddings\": image_embedding,\n",
|
725 |
+
" \"point_coords\": onnx_coord,\n",
|
726 |
+
" \"point_labels\": onnx_label,\n",
|
727 |
+
" \"mask_input\": onnx_mask_input,\n",
|
728 |
+
" \"has_mask_input\": onnx_has_mask_input,\n",
|
729 |
+
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
|
730 |
+
"}\n",
|
731 |
+
"\n",
|
732 |
+
"masks, _, _ = ort_session.run(None, ort_inputs)\n",
|
733 |
+
"masks = masks > predictor.model.mask_threshold"
|
734 |
+
]
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"cell_type": "code",
|
738 |
+
"execution_count": null,
|
739 |
+
"id": "8301bf33",
|
740 |
+
"metadata": {},
|
741 |
+
"outputs": [],
|
742 |
+
"source": [
|
743 |
+
"plt.figure(figsize=(10, 10))\n",
|
744 |
+
"plt.imshow(image)\n",
|
745 |
+
"show_mask(masks[0], plt.gca())\n",
|
746 |
+
"show_box(input_box, plt.gca())\n",
|
747 |
+
"show_points(input_point, input_label, plt.gca())\n",
|
748 |
+
"plt.axis('off')\n",
|
749 |
+
"plt.show()"
|
750 |
+
]
|
751 |
+
}
|
752 |
+
],
|
753 |
+
"metadata": {
|
754 |
+
"kernelspec": {
|
755 |
+
"display_name": "Python 3 (ipykernel)",
|
756 |
+
"language": "python",
|
757 |
+
"name": "python3"
|
758 |
+
},
|
759 |
+
"language_info": {
|
760 |
+
"codemirror_mode": {
|
761 |
+
"name": "ipython",
|
762 |
+
"version": 3
|
763 |
+
},
|
764 |
+
"file_extension": ".py",
|
765 |
+
"mimetype": "text/x-python",
|
766 |
+
"name": "python",
|
767 |
+
"nbconvert_exporter": "python",
|
768 |
+
"pygments_lexer": "ipython3",
|
769 |
+
"version": "3.8.0"
|
770 |
+
}
|
771 |
+
},
|
772 |
+
"nbformat": 4,
|
773 |
+
"nbformat_minor": 5
|
774 |
+
}
|
modules/sam/notebooks/predictor_example.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules/sam/predictor.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from .modeling import Sam
|
11 |
+
|
12 |
+
from typing import Optional, Tuple
|
13 |
+
|
14 |
+
from .utils.transforms import ResizeLongestSide
|
15 |
+
|
16 |
+
|
17 |
+
class SamPredictor:
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
sam_model: Sam,
|
21 |
+
) -> None:
|
22 |
+
"""
|
23 |
+
Uses SAM to calculate the image embedding for an image, and then
|
24 |
+
allow repeated, efficient mask prediction given prompts.
|
25 |
+
|
26 |
+
Arguments:
|
27 |
+
sam_model (Sam): The model to use for mask prediction.
|
28 |
+
"""
|
29 |
+
super().__init__()
|
30 |
+
self.model = sam_model
|
31 |
+
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
32 |
+
self.reset_image()
|
33 |
+
|
34 |
+
def set_image(
|
35 |
+
self,
|
36 |
+
image: np.ndarray,
|
37 |
+
image_format: str = "RGB",
|
38 |
+
) -> None:
|
39 |
+
"""
|
40 |
+
Calculates the image embeddings for the provided image, allowing
|
41 |
+
masks to be predicted with the 'predict' method.
|
42 |
+
|
43 |
+
Arguments:
|
44 |
+
image (np.ndarray): The image for calculating masks. Expects an
|
45 |
+
image in HWC uint8 format, with pixel values in [0, 255].
|
46 |
+
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
47 |
+
"""
|
48 |
+
assert image_format in [
|
49 |
+
"RGB",
|
50 |
+
"BGR",
|
51 |
+
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
52 |
+
if image_format != self.model.image_format:
|
53 |
+
image = image[..., ::-1]
|
54 |
+
|
55 |
+
# Transform the image to the form expected by the model
|
56 |
+
input_image = self.transform.apply_image(image)
|
57 |
+
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
58 |
+
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
59 |
+
|
60 |
+
self.set_torch_image(input_image_torch, image.shape[:2])
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def set_torch_image(
|
64 |
+
self,
|
65 |
+
transformed_image: torch.Tensor,
|
66 |
+
original_image_size: Tuple[int, ...],
|
67 |
+
) -> None:
|
68 |
+
"""
|
69 |
+
Calculates the image embeddings for the provided image, allowing
|
70 |
+
masks to be predicted with the 'predict' method. Expects the input
|
71 |
+
image to be already transformed to the format expected by the model.
|
72 |
+
|
73 |
+
Arguments:
|
74 |
+
transformed_image (torch.Tensor): The input image, with shape
|
75 |
+
1x3xHxW, which has been transformed with ResizeLongestSide.
|
76 |
+
original_image_size (tuple(int, int)): The size of the image
|
77 |
+
before transformation, in (H, W) format.
|
78 |
+
"""
|
79 |
+
assert (
|
80 |
+
len(transformed_image.shape) == 4
|
81 |
+
and transformed_image.shape[1] == 3
|
82 |
+
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
|
83 |
+
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
|
84 |
+
self.reset_image()
|
85 |
+
|
86 |
+
self.original_size = original_image_size
|
87 |
+
self.input_size = tuple(transformed_image.shape[-2:])
|
88 |
+
input_image = self.model.preprocess(transformed_image)
|
89 |
+
self.features = self.model.image_encoder(input_image)
|
90 |
+
self.is_image_set = True
|
91 |
+
|
92 |
+
def predict(
|
93 |
+
self,
|
94 |
+
point_coords: Optional[np.ndarray] = None,
|
95 |
+
point_labels: Optional[np.ndarray] = None,
|
96 |
+
box: Optional[np.ndarray] = None,
|
97 |
+
mask_input: Optional[np.ndarray] = None,
|
98 |
+
multimask_output: bool = True,
|
99 |
+
return_logits: bool = False,
|
100 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
101 |
+
"""
|
102 |
+
Predict masks for the given input prompts, using the currently set image.
|
103 |
+
|
104 |
+
Arguments:
|
105 |
+
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
106 |
+
model. Each point is in (X,Y) in pixels.
|
107 |
+
point_labels (np.ndarray or None): A length N array of labels for the
|
108 |
+
point prompts. 1 indicates a foreground point and 0 indicates a
|
109 |
+
background point.
|
110 |
+
box (np.ndarray or None): A length 4 array given a box prompt to the
|
111 |
+
model, in XYXY format.
|
112 |
+
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
113 |
+
coming from a previous prediction iteration. Has form 1xHxW, where
|
114 |
+
for SAM, H=W=256.
|
115 |
+
multimask_output (bool): If true, the model will return three masks.
|
116 |
+
For ambiguous input prompts (such as a single click), this will often
|
117 |
+
produce better masks than a single prediction. If only a single
|
118 |
+
mask is needed, the model's predicted quality score can be used
|
119 |
+
to select the best mask. For non-ambiguous prompts, such as multiple
|
120 |
+
input prompts, multimask_output=False can give better results.
|
121 |
+
return_logits (bool): If true, returns un-thresholded masks logits
|
122 |
+
instead of a binary mask.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
(np.ndarray): The output masks in CxHxW format, where C is the
|
126 |
+
number of masks, and (H, W) is the original image size.
|
127 |
+
(np.ndarray): An array of length C containing the model's
|
128 |
+
predictions for the quality of each mask.
|
129 |
+
(np.ndarray): An array of shape CxHxW, where C is the number
|
130 |
+
of masks and H=W=256. These low resolution logits can be passed to
|
131 |
+
a subsequent iteration as mask input.
|
132 |
+
"""
|
133 |
+
if not self.is_image_set:
|
134 |
+
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
135 |
+
|
136 |
+
# Transform input prompts
|
137 |
+
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
138 |
+
if point_coords is not None:
|
139 |
+
assert (
|
140 |
+
point_labels is not None
|
141 |
+
), "point_labels must be supplied if point_coords is supplied."
|
142 |
+
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
143 |
+
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
|
144 |
+
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
145 |
+
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
146 |
+
if box is not None:
|
147 |
+
box = self.transform.apply_boxes(box, self.original_size)
|
148 |
+
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
149 |
+
box_torch = box_torch[None, :]
|
150 |
+
if mask_input is not None:
|
151 |
+
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
|
152 |
+
mask_input_torch = mask_input_torch[None, :, :, :]
|
153 |
+
|
154 |
+
masks, iou_predictions, low_res_masks = self.predict_torch(
|
155 |
+
coords_torch,
|
156 |
+
labels_torch,
|
157 |
+
box_torch,
|
158 |
+
mask_input_torch,
|
159 |
+
multimask_output,
|
160 |
+
return_logits=return_logits,
|
161 |
+
)
|
162 |
+
|
163 |
+
masks_np = masks[0].detach().cpu().numpy()
|
164 |
+
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
|
165 |
+
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
|
166 |
+
return masks_np, iou_predictions_np, low_res_masks_np
|
167 |
+
|
168 |
+
@torch.no_grad()
|
169 |
+
def predict_torch(
|
170 |
+
self,
|
171 |
+
point_coords: Optional[torch.Tensor],
|
172 |
+
point_labels: Optional[torch.Tensor],
|
173 |
+
boxes: Optional[torch.Tensor] = None,
|
174 |
+
mask_input: Optional[torch.Tensor] = None,
|
175 |
+
multimask_output: bool = True,
|
176 |
+
return_logits: bool = False,
|
177 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
178 |
+
"""
|
179 |
+
Predict masks for the given input prompts, using the currently set image.
|
180 |
+
Input prompts are batched torch tensors and are expected to already be
|
181 |
+
transformed to the input frame using ResizeLongestSide.
|
182 |
+
|
183 |
+
Arguments:
|
184 |
+
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
185 |
+
model. Each point is in (X,Y) in pixels.
|
186 |
+
point_labels (torch.Tensor or None): A BxN array of labels for the
|
187 |
+
point prompts. 1 indicates a foreground point and 0 indicates a
|
188 |
+
background point.
|
189 |
+
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
190 |
+
model, in XYXY format.
|
191 |
+
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
192 |
+
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
193 |
+
for SAM, H=W=256. Masks returned by a previous iteration of the
|
194 |
+
predict method do not need further transformation.
|
195 |
+
multimask_output (bool): If true, the model will return three masks.
|
196 |
+
For ambiguous input prompts (such as a single click), this will often
|
197 |
+
produce better masks than a single prediction. If only a single
|
198 |
+
mask is needed, the model's predicted quality score can be used
|
199 |
+
to select the best mask. For non-ambiguous prompts, such as multiple
|
200 |
+
input prompts, multimask_output=False can give better results.
|
201 |
+
return_logits (bool): If true, returns un-thresholded masks logits
|
202 |
+
instead of a binary mask.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
206 |
+
number of masks, and (H, W) is the original image size.
|
207 |
+
(torch.Tensor): An array of shape BxC containing the model's
|
208 |
+
predictions for the quality of each mask.
|
209 |
+
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
210 |
+
of masks and H=W=256. These low res logits can be passed to
|
211 |
+
a subsequent iteration as mask input.
|
212 |
+
"""
|
213 |
+
if not self.is_image_set:
|
214 |
+
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
215 |
+
|
216 |
+
if point_coords is not None:
|
217 |
+
points = (point_coords, point_labels)
|
218 |
+
else:
|
219 |
+
points = None
|
220 |
+
|
221 |
+
# Embed prompts
|
222 |
+
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
223 |
+
points=points,
|
224 |
+
boxes=boxes,
|
225 |
+
masks=mask_input,
|
226 |
+
)
|
227 |
+
|
228 |
+
# Predict masks
|
229 |
+
low_res_masks, iou_predictions = self.model.mask_decoder(
|
230 |
+
image_embeddings=self.features,
|
231 |
+
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
232 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
233 |
+
dense_prompt_embeddings=dense_embeddings,
|
234 |
+
multimask_output=multimask_output,
|
235 |
+
)
|
236 |
+
|
237 |
+
# Upscale the masks to the original image resolution
|
238 |
+
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
|
239 |
+
|
240 |
+
if not return_logits:
|
241 |
+
masks = masks > self.model.mask_threshold
|
242 |
+
|
243 |
+
return masks, iou_predictions, low_res_masks
|
244 |
+
|
245 |
+
def get_image_embedding(self) -> torch.Tensor:
|
246 |
+
"""
|
247 |
+
Returns the image embeddings for the currently set image, with
|
248 |
+
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
249 |
+
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
250 |
+
"""
|
251 |
+
if not self.is_image_set:
|
252 |
+
raise RuntimeError(
|
253 |
+
"An image must be set with .set_image(...) to generate an embedding."
|
254 |
+
)
|
255 |
+
assert self.features is not None, "Features must exist if an image has been set."
|
256 |
+
return self.features
|
257 |
+
|
258 |
+
@property
|
259 |
+
def device(self) -> torch.device:
|
260 |
+
return self.model.device
|
261 |
+
|
262 |
+
def reset_image(self) -> None:
|
263 |
+
"""Resets the currently set image."""
|
264 |
+
self.is_image_set = False
|
265 |
+
self.features = None
|
266 |
+
self.orig_h = None
|
267 |
+
self.orig_w = None
|
268 |
+
self.input_h = None
|
269 |
+
self.input_w = None
|
modules/sam/scripts/amg.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import cv2 # type: ignore
|
8 |
+
|
9 |
+
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import json
|
13 |
+
import os
|
14 |
+
from typing import Any, Dict, List
|
15 |
+
|
16 |
+
parser = argparse.ArgumentParser(
|
17 |
+
description=(
|
18 |
+
"Runs automatic mask generation on an input image or directory of images, "
|
19 |
+
"and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
|
20 |
+
"as well as pycocotools if saving in RLE format."
|
21 |
+
)
|
22 |
+
)
|
23 |
+
|
24 |
+
parser.add_argument(
|
25 |
+
"--input",
|
26 |
+
type=str,
|
27 |
+
required=True,
|
28 |
+
help="Path to either a single input image or folder of images.",
|
29 |
+
)
|
30 |
+
|
31 |
+
parser.add_argument(
|
32 |
+
"--output",
|
33 |
+
type=str,
|
34 |
+
required=True,
|
35 |
+
help=(
|
36 |
+
"Path to the directory where masks will be output. Output will be either a folder "
|
37 |
+
"of PNGs per image or a single json with COCO-style masks."
|
38 |
+
),
|
39 |
+
)
|
40 |
+
|
41 |
+
parser.add_argument(
|
42 |
+
"--model-type",
|
43 |
+
type=str,
|
44 |
+
required=True,
|
45 |
+
help="The type of model to load, in ['default', 'vit_h', 'vit_l', 'vit_b']",
|
46 |
+
)
|
47 |
+
|
48 |
+
parser.add_argument(
|
49 |
+
"--checkpoint",
|
50 |
+
type=str,
|
51 |
+
required=True,
|
52 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
53 |
+
)
|
54 |
+
|
55 |
+
parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.")
|
56 |
+
|
57 |
+
parser.add_argument(
|
58 |
+
"--convert-to-rle",
|
59 |
+
action="store_true",
|
60 |
+
help=(
|
61 |
+
"Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
|
62 |
+
"Requires pycocotools."
|
63 |
+
),
|
64 |
+
)
|
65 |
+
|
66 |
+
amg_settings = parser.add_argument_group("AMG Settings")
|
67 |
+
|
68 |
+
amg_settings.add_argument(
|
69 |
+
"--points-per-side",
|
70 |
+
type=int,
|
71 |
+
default=None,
|
72 |
+
help="Generate masks by sampling a grid over the image with this many points to a side.",
|
73 |
+
)
|
74 |
+
|
75 |
+
amg_settings.add_argument(
|
76 |
+
"--points-per-batch",
|
77 |
+
type=int,
|
78 |
+
default=None,
|
79 |
+
help="How many input points to process simultaneously in one batch.",
|
80 |
+
)
|
81 |
+
|
82 |
+
amg_settings.add_argument(
|
83 |
+
"--pred-iou-thresh",
|
84 |
+
type=float,
|
85 |
+
default=None,
|
86 |
+
help="Exclude masks with a predicted score from the model that is lower than this threshold.",
|
87 |
+
)
|
88 |
+
|
89 |
+
amg_settings.add_argument(
|
90 |
+
"--stability-score-thresh",
|
91 |
+
type=float,
|
92 |
+
default=None,
|
93 |
+
help="Exclude masks with a stability score lower than this threshold.",
|
94 |
+
)
|
95 |
+
|
96 |
+
amg_settings.add_argument(
|
97 |
+
"--stability-score-offset",
|
98 |
+
type=float,
|
99 |
+
default=None,
|
100 |
+
help="Larger values perturb the mask more when measuring stability score.",
|
101 |
+
)
|
102 |
+
|
103 |
+
amg_settings.add_argument(
|
104 |
+
"--box-nms-thresh",
|
105 |
+
type=float,
|
106 |
+
default=None,
|
107 |
+
help="The overlap threshold for excluding a duplicate mask.",
|
108 |
+
)
|
109 |
+
|
110 |
+
amg_settings.add_argument(
|
111 |
+
"--crop-n-layers",
|
112 |
+
type=int,
|
113 |
+
default=None,
|
114 |
+
help=(
|
115 |
+
"If >0, mask generation is run on smaller crops of the image to generate more masks. "
|
116 |
+
"The value sets how many different scales to crop at."
|
117 |
+
),
|
118 |
+
)
|
119 |
+
|
120 |
+
amg_settings.add_argument(
|
121 |
+
"--crop-nms-thresh",
|
122 |
+
type=float,
|
123 |
+
default=None,
|
124 |
+
help="The overlap threshold for excluding duplicate masks across different crops.",
|
125 |
+
)
|
126 |
+
|
127 |
+
amg_settings.add_argument(
|
128 |
+
"--crop-overlap-ratio",
|
129 |
+
type=int,
|
130 |
+
default=None,
|
131 |
+
help="Larger numbers mean image crops will overlap more.",
|
132 |
+
)
|
133 |
+
|
134 |
+
amg_settings.add_argument(
|
135 |
+
"--crop-n-points-downscale-factor",
|
136 |
+
type=int,
|
137 |
+
default=None,
|
138 |
+
help="The number of points-per-side in each layer of crop is reduced by this factor.",
|
139 |
+
)
|
140 |
+
|
141 |
+
amg_settings.add_argument(
|
142 |
+
"--min-mask-region-area",
|
143 |
+
type=int,
|
144 |
+
default=None,
|
145 |
+
help=(
|
146 |
+
"Disconnected mask regions or holes with area smaller than this value "
|
147 |
+
"in pixels are removed by postprocessing."
|
148 |
+
),
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
|
153 |
+
header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
|
154 |
+
metadata = [header]
|
155 |
+
for i, mask_data in enumerate(masks):
|
156 |
+
mask = mask_data["segmentation"]
|
157 |
+
filename = f"{i}.png"
|
158 |
+
cv2.imwrite(os.path.join(path, filename), mask * 255)
|
159 |
+
mask_metadata = [
|
160 |
+
str(i),
|
161 |
+
str(mask_data["area"]),
|
162 |
+
*[str(x) for x in mask_data["bbox"]],
|
163 |
+
*[str(x) for x in mask_data["point_coords"][0]],
|
164 |
+
str(mask_data["predicted_iou"]),
|
165 |
+
str(mask_data["stability_score"]),
|
166 |
+
*[str(x) for x in mask_data["crop_box"]],
|
167 |
+
]
|
168 |
+
row = ",".join(mask_metadata)
|
169 |
+
metadata.append(row)
|
170 |
+
metadata_path = os.path.join(path, "metadata.csv")
|
171 |
+
with open(metadata_path, "w") as f:
|
172 |
+
f.write("\n".join(metadata))
|
173 |
+
|
174 |
+
return
|
175 |
+
|
176 |
+
|
177 |
+
def get_amg_kwargs(args):
|
178 |
+
amg_kwargs = {
|
179 |
+
"points_per_side": args.points_per_side,
|
180 |
+
"points_per_batch": args.points_per_batch,
|
181 |
+
"pred_iou_thresh": args.pred_iou_thresh,
|
182 |
+
"stability_score_thresh": args.stability_score_thresh,
|
183 |
+
"stability_score_offset": args.stability_score_offset,
|
184 |
+
"box_nms_thresh": args.box_nms_thresh,
|
185 |
+
"crop_n_layers": args.crop_n_layers,
|
186 |
+
"crop_nms_thresh": args.crop_nms_thresh,
|
187 |
+
"crop_overlap_ratio": args.crop_overlap_ratio,
|
188 |
+
"crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
|
189 |
+
"min_mask_region_area": args.min_mask_region_area,
|
190 |
+
}
|
191 |
+
amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
|
192 |
+
return amg_kwargs
|
193 |
+
|
194 |
+
|
195 |
+
def main(args: argparse.Namespace) -> None:
|
196 |
+
print("Loading model...")
|
197 |
+
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
|
198 |
+
_ = sam.to(device=args.device)
|
199 |
+
output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
|
200 |
+
amg_kwargs = get_amg_kwargs(args)
|
201 |
+
generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
|
202 |
+
|
203 |
+
if not os.path.isdir(args.input):
|
204 |
+
targets = [args.input]
|
205 |
+
else:
|
206 |
+
targets = [
|
207 |
+
f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f))
|
208 |
+
]
|
209 |
+
targets = [os.path.join(args.input, f) for f in targets]
|
210 |
+
|
211 |
+
os.makedirs(args.output, exist_ok=True)
|
212 |
+
|
213 |
+
for t in targets:
|
214 |
+
print(f"Processing '{t}'...")
|
215 |
+
image = cv2.imread(t)
|
216 |
+
if image is None:
|
217 |
+
print(f"Could not load '{t}' as an image, skipping...")
|
218 |
+
continue
|
219 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
220 |
+
|
221 |
+
masks = generator.generate(image)
|
222 |
+
|
223 |
+
base = os.path.basename(t)
|
224 |
+
base = os.path.splitext(base)[0]
|
225 |
+
save_base = os.path.join(args.output, base)
|
226 |
+
if output_mode == "binary_mask":
|
227 |
+
os.makedirs(save_base, exist_ok=False)
|
228 |
+
write_masks_to_folder(masks, save_base)
|
229 |
+
else:
|
230 |
+
save_file = save_base + ".json"
|
231 |
+
with open(save_file, "w") as f:
|
232 |
+
json.dump(masks, f)
|
233 |
+
print("Done!")
|
234 |
+
|
235 |
+
|
236 |
+
if __name__ == "__main__":
|
237 |
+
args = parser.parse_args()
|
238 |
+
main(args)
|
modules/sam/scripts/export_onnx_model.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from segment_anything import sam_model_registry
|
10 |
+
from segment_anything.utils.onnx import SamOnnxModel
|
11 |
+
|
12 |
+
import argparse
|
13 |
+
import warnings
|
14 |
+
|
15 |
+
try:
|
16 |
+
import onnxruntime # type: ignore
|
17 |
+
|
18 |
+
onnxruntime_exists = True
|
19 |
+
except ImportError:
|
20 |
+
onnxruntime_exists = False
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser(
|
23 |
+
description="Export the SAM prompt encoder and mask decoder to an ONNX model."
|
24 |
+
)
|
25 |
+
|
26 |
+
parser.add_argument(
|
27 |
+
"--checkpoint", type=str, required=True, help="The path to the SAM model checkpoint."
|
28 |
+
)
|
29 |
+
|
30 |
+
parser.add_argument(
|
31 |
+
"--output", type=str, required=True, help="The filename to save the ONNX model to."
|
32 |
+
)
|
33 |
+
|
34 |
+
parser.add_argument(
|
35 |
+
"--model-type",
|
36 |
+
type=str,
|
37 |
+
required=True,
|
38 |
+
help="In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.",
|
39 |
+
)
|
40 |
+
|
41 |
+
parser.add_argument(
|
42 |
+
"--return-single-mask",
|
43 |
+
action="store_true",
|
44 |
+
help=(
|
45 |
+
"If true, the exported ONNX model will only return the best mask, "
|
46 |
+
"instead of returning multiple masks. For high resolution images "
|
47 |
+
"this can improve runtime when upscaling masks is expensive."
|
48 |
+
),
|
49 |
+
)
|
50 |
+
|
51 |
+
parser.add_argument(
|
52 |
+
"--opset",
|
53 |
+
type=int,
|
54 |
+
default=17,
|
55 |
+
help="The ONNX opset version to use. Must be >=11",
|
56 |
+
)
|
57 |
+
|
58 |
+
parser.add_argument(
|
59 |
+
"--quantize-out",
|
60 |
+
type=str,
|
61 |
+
default=None,
|
62 |
+
help=(
|
63 |
+
"If set, will quantize the model and save it with this name. "
|
64 |
+
"Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize."
|
65 |
+
),
|
66 |
+
)
|
67 |
+
|
68 |
+
parser.add_argument(
|
69 |
+
"--gelu-approximate",
|
70 |
+
action="store_true",
|
71 |
+
help=(
|
72 |
+
"Replace GELU operations with approximations using tanh. Useful "
|
73 |
+
"for some runtimes that have slow or unimplemented erf ops, used in GELU."
|
74 |
+
),
|
75 |
+
)
|
76 |
+
|
77 |
+
parser.add_argument(
|
78 |
+
"--use-stability-score",
|
79 |
+
action="store_true",
|
80 |
+
help=(
|
81 |
+
"Replaces the model's predicted mask quality score with the stability "
|
82 |
+
"score calculated on the low resolution masks using an offset of 1.0. "
|
83 |
+
),
|
84 |
+
)
|
85 |
+
|
86 |
+
parser.add_argument(
|
87 |
+
"--return-extra-metrics",
|
88 |
+
action="store_true",
|
89 |
+
help=(
|
90 |
+
"The model will return five results: (masks, scores, stability_scores, "
|
91 |
+
"areas, low_res_logits) instead of the usual three. This can be "
|
92 |
+
"significantly slower for high resolution outputs."
|
93 |
+
),
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def run_export(
|
98 |
+
model_type: str,
|
99 |
+
checkpoint: str,
|
100 |
+
output: str,
|
101 |
+
opset: int,
|
102 |
+
return_single_mask: bool,
|
103 |
+
gelu_approximate: bool = False,
|
104 |
+
use_stability_score: bool = False,
|
105 |
+
return_extra_metrics=False,
|
106 |
+
):
|
107 |
+
print("Loading model...")
|
108 |
+
sam = sam_model_registry[model_type](checkpoint=checkpoint)
|
109 |
+
|
110 |
+
onnx_model = SamOnnxModel(
|
111 |
+
model=sam,
|
112 |
+
return_single_mask=return_single_mask,
|
113 |
+
use_stability_score=use_stability_score,
|
114 |
+
return_extra_metrics=return_extra_metrics,
|
115 |
+
)
|
116 |
+
|
117 |
+
if gelu_approximate:
|
118 |
+
for n, m in onnx_model.named_modules():
|
119 |
+
if isinstance(m, torch.nn.GELU):
|
120 |
+
m.approximate = "tanh"
|
121 |
+
|
122 |
+
dynamic_axes = {
|
123 |
+
"point_coords": {1: "num_points"},
|
124 |
+
"point_labels": {1: "num_points"},
|
125 |
+
}
|
126 |
+
|
127 |
+
embed_dim = sam.prompt_encoder.embed_dim
|
128 |
+
embed_size = sam.prompt_encoder.image_embedding_size
|
129 |
+
mask_input_size = [4 * x for x in embed_size]
|
130 |
+
dummy_inputs = {
|
131 |
+
"image_embeddings": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),
|
132 |
+
"point_coords": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),
|
133 |
+
"point_labels": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),
|
134 |
+
"mask_input": torch.randn(1, 1, *mask_input_size, dtype=torch.float),
|
135 |
+
"has_mask_input": torch.tensor([1], dtype=torch.float),
|
136 |
+
"orig_im_size": torch.tensor([1500, 2250], dtype=torch.float),
|
137 |
+
}
|
138 |
+
|
139 |
+
_ = onnx_model(**dummy_inputs)
|
140 |
+
|
141 |
+
output_names = ["masks", "iou_predictions", "low_res_masks"]
|
142 |
+
|
143 |
+
with warnings.catch_warnings():
|
144 |
+
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
|
145 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
146 |
+
with open(output, "wb") as f:
|
147 |
+
print(f"Exporting onnx model to {output}...")
|
148 |
+
torch.onnx.export(
|
149 |
+
onnx_model,
|
150 |
+
tuple(dummy_inputs.values()),
|
151 |
+
f,
|
152 |
+
export_params=True,
|
153 |
+
verbose=False,
|
154 |
+
opset_version=opset,
|
155 |
+
do_constant_folding=True,
|
156 |
+
input_names=list(dummy_inputs.keys()),
|
157 |
+
output_names=output_names,
|
158 |
+
dynamic_axes=dynamic_axes,
|
159 |
+
)
|
160 |
+
|
161 |
+
if onnxruntime_exists:
|
162 |
+
ort_inputs = {k: to_numpy(v) for k, v in dummy_inputs.items()}
|
163 |
+
# set cpu provider default
|
164 |
+
providers = ["CPUExecutionProvider"]
|
165 |
+
ort_session = onnxruntime.InferenceSession(output, providers=providers)
|
166 |
+
_ = ort_session.run(None, ort_inputs)
|
167 |
+
print("Model has successfully been run with ONNXRuntime.")
|
168 |
+
|
169 |
+
|
170 |
+
def to_numpy(tensor):
|
171 |
+
return tensor.cpu().numpy()
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
args = parser.parse_args()
|
176 |
+
run_export(
|
177 |
+
model_type=args.model_type,
|
178 |
+
checkpoint=args.checkpoint,
|
179 |
+
output=args.output,
|
180 |
+
opset=args.opset,
|
181 |
+
return_single_mask=args.return_single_mask,
|
182 |
+
gelu_approximate=args.gelu_approximate,
|
183 |
+
use_stability_score=args.use_stability_score,
|
184 |
+
return_extra_metrics=args.return_extra_metrics,
|
185 |
+
)
|
186 |
+
|
187 |
+
if args.quantize_out is not None:
|
188 |
+
assert onnxruntime_exists, "onnxruntime is required to quantize the model."
|
189 |
+
from onnxruntime.quantization import QuantType # type: ignore
|
190 |
+
from onnxruntime.quantization.quantize import quantize_dynamic # type: ignore
|
191 |
+
|
192 |
+
print(f"Quantizing model and writing to {args.quantize_out}...")
|
193 |
+
quantize_dynamic(
|
194 |
+
model_input=args.output,
|
195 |
+
model_output=args.quantize_out,
|
196 |
+
optimize_model=True,
|
197 |
+
per_channel=False,
|
198 |
+
reduce_range=False,
|
199 |
+
weight_type=QuantType.QUInt8,
|
200 |
+
)
|
201 |
+
print("Done!")
|
modules/sam/utils/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
modules/sam/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (155 Bytes). View file
|
|
modules/sam/utils/__pycache__/amg.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
modules/sam/utils/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (3.94 kB). View file
|
|
modules/sam/utils/amg.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import math
|
11 |
+
from copy import deepcopy
|
12 |
+
from itertools import product
|
13 |
+
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
14 |
+
|
15 |
+
|
16 |
+
class MaskData:
|
17 |
+
"""
|
18 |
+
A structure for storing masks and their related data in batched format.
|
19 |
+
Implements basic filtering and concatenation.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, **kwargs) -> None:
|
23 |
+
for v in kwargs.values():
|
24 |
+
assert isinstance(
|
25 |
+
v, (list, np.ndarray, torch.Tensor)
|
26 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
27 |
+
self._stats = dict(**kwargs)
|
28 |
+
|
29 |
+
def __setitem__(self, key: str, item: Any) -> None:
|
30 |
+
assert isinstance(
|
31 |
+
item, (list, np.ndarray, torch.Tensor)
|
32 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
33 |
+
self._stats[key] = item
|
34 |
+
|
35 |
+
def __delitem__(self, key: str) -> None:
|
36 |
+
del self._stats[key]
|
37 |
+
|
38 |
+
def __getitem__(self, key: str) -> Any:
|
39 |
+
return self._stats[key]
|
40 |
+
|
41 |
+
def items(self) -> ItemsView[str, Any]:
|
42 |
+
return self._stats.items()
|
43 |
+
|
44 |
+
def filter(self, keep: torch.Tensor) -> None:
|
45 |
+
for k, v in self._stats.items():
|
46 |
+
if v is None:
|
47 |
+
self._stats[k] = None
|
48 |
+
elif isinstance(v, torch.Tensor):
|
49 |
+
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
50 |
+
elif isinstance(v, np.ndarray):
|
51 |
+
self._stats[k] = v[keep.detach().cpu().numpy()]
|
52 |
+
elif isinstance(v, list) and keep.dtype == torch.bool:
|
53 |
+
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
54 |
+
elif isinstance(v, list):
|
55 |
+
self._stats[k] = [v[i] for i in keep]
|
56 |
+
else:
|
57 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
58 |
+
|
59 |
+
def cat(self, new_stats: "MaskData") -> None:
|
60 |
+
for k, v in new_stats.items():
|
61 |
+
if k not in self._stats or self._stats[k] is None:
|
62 |
+
self._stats[k] = deepcopy(v)
|
63 |
+
elif isinstance(v, torch.Tensor):
|
64 |
+
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
65 |
+
elif isinstance(v, np.ndarray):
|
66 |
+
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
67 |
+
elif isinstance(v, list):
|
68 |
+
self._stats[k] = self._stats[k] + deepcopy(v)
|
69 |
+
else:
|
70 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
71 |
+
|
72 |
+
def to_numpy(self) -> None:
|
73 |
+
for k, v in self._stats.items():
|
74 |
+
if isinstance(v, torch.Tensor):
|
75 |
+
self._stats[k] = v.detach().cpu().numpy()
|
76 |
+
|
77 |
+
|
78 |
+
def is_box_near_crop_edge(
|
79 |
+
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
80 |
+
) -> torch.Tensor:
|
81 |
+
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
82 |
+
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
83 |
+
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
84 |
+
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
85 |
+
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
86 |
+
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
87 |
+
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
88 |
+
return torch.any(near_crop_edge, dim=1)
|
89 |
+
|
90 |
+
|
91 |
+
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
92 |
+
box_xywh = deepcopy(box_xyxy)
|
93 |
+
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
94 |
+
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
95 |
+
return box_xywh
|
96 |
+
|
97 |
+
|
98 |
+
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
99 |
+
assert len(args) > 0 and all(
|
100 |
+
len(a) == len(args[0]) for a in args
|
101 |
+
), "Batched iteration must have inputs of all the same size."
|
102 |
+
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
103 |
+
for b in range(n_batches):
|
104 |
+
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
105 |
+
|
106 |
+
|
107 |
+
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
108 |
+
"""
|
109 |
+
Encodes masks to an uncompressed RLE, in the format expected by
|
110 |
+
pycoco tools.
|
111 |
+
"""
|
112 |
+
# Put in fortran order and flatten h,w
|
113 |
+
b, h, w = tensor.shape
|
114 |
+
tensor = tensor.permute(0, 2, 1).flatten(1)
|
115 |
+
|
116 |
+
# Compute change indices
|
117 |
+
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
118 |
+
change_indices = diff.nonzero()
|
119 |
+
|
120 |
+
# Encode run length
|
121 |
+
out = []
|
122 |
+
for i in range(b):
|
123 |
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
124 |
+
cur_idxs = torch.cat(
|
125 |
+
[
|
126 |
+
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
127 |
+
cur_idxs + 1,
|
128 |
+
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
129 |
+
]
|
130 |
+
)
|
131 |
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
132 |
+
counts = [] if tensor[i, 0] == 0 else [0]
|
133 |
+
counts.extend(btw_idxs.detach().cpu().tolist())
|
134 |
+
out.append({"size": [h, w], "counts": counts})
|
135 |
+
return out
|
136 |
+
|
137 |
+
|
138 |
+
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
139 |
+
"""Compute a binary mask from an uncompressed RLE."""
|
140 |
+
h, w = rle["size"]
|
141 |
+
mask = np.empty(h * w, dtype=bool)
|
142 |
+
idx = 0
|
143 |
+
parity = False
|
144 |
+
for count in rle["counts"]:
|
145 |
+
mask[idx : idx + count] = parity
|
146 |
+
idx += count
|
147 |
+
parity ^= True
|
148 |
+
mask = mask.reshape(w, h)
|
149 |
+
return mask.transpose() # Put in C order
|
150 |
+
|
151 |
+
|
152 |
+
def area_from_rle(rle: Dict[str, Any]) -> int:
|
153 |
+
return sum(rle["counts"][1::2])
|
154 |
+
|
155 |
+
|
156 |
+
def calculate_stability_score(
|
157 |
+
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
158 |
+
) -> torch.Tensor:
|
159 |
+
"""
|
160 |
+
Computes the stability score for a batch of masks. The stability
|
161 |
+
score is the IoU between the binary masks obtained by thresholding
|
162 |
+
the predicted mask logits at high and low values.
|
163 |
+
"""
|
164 |
+
# One mask is always contained inside the other.
|
165 |
+
# Save memory by preventing unnecessary cast to torch.int64
|
166 |
+
intersections = (
|
167 |
+
(masks > (mask_threshold + threshold_offset))
|
168 |
+
.sum(-1, dtype=torch.int16)
|
169 |
+
.sum(-1, dtype=torch.int32)
|
170 |
+
)
|
171 |
+
unions = (
|
172 |
+
(masks > (mask_threshold - threshold_offset))
|
173 |
+
.sum(-1, dtype=torch.int16)
|
174 |
+
.sum(-1, dtype=torch.int32)
|
175 |
+
)
|
176 |
+
return intersections / unions
|
177 |
+
|
178 |
+
|
179 |
+
def build_point_grid(n_per_side: int) -> np.ndarray:
|
180 |
+
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
181 |
+
offset = 1 / (2 * n_per_side)
|
182 |
+
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
183 |
+
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
184 |
+
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
185 |
+
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
186 |
+
return points
|
187 |
+
|
188 |
+
|
189 |
+
def build_all_layer_point_grids(
|
190 |
+
n_per_side: int, n_layers: int, scale_per_layer: int
|
191 |
+
) -> List[np.ndarray]:
|
192 |
+
"""Generates point grids for all crop layers."""
|
193 |
+
points_by_layer = []
|
194 |
+
for i in range(n_layers + 1):
|
195 |
+
n_points = int(n_per_side / (scale_per_layer**i))
|
196 |
+
points_by_layer.append(build_point_grid(n_points))
|
197 |
+
return points_by_layer
|
198 |
+
|
199 |
+
|
200 |
+
def generate_crop_boxes(
|
201 |
+
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
202 |
+
) -> Tuple[List[List[int]], List[int]]:
|
203 |
+
"""
|
204 |
+
Generates a list of crop boxes of different sizes. Each layer
|
205 |
+
has (2**i)**2 boxes for the ith layer.
|
206 |
+
"""
|
207 |
+
crop_boxes, layer_idxs = [], []
|
208 |
+
im_h, im_w = im_size
|
209 |
+
short_side = min(im_h, im_w)
|
210 |
+
|
211 |
+
# Original image
|
212 |
+
crop_boxes.append([0, 0, im_w, im_h])
|
213 |
+
layer_idxs.append(0)
|
214 |
+
|
215 |
+
def crop_len(orig_len, n_crops, overlap):
|
216 |
+
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
217 |
+
|
218 |
+
for i_layer in range(n_layers):
|
219 |
+
n_crops_per_side = 2 ** (i_layer + 1)
|
220 |
+
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
221 |
+
|
222 |
+
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
223 |
+
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
224 |
+
|
225 |
+
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
226 |
+
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
227 |
+
|
228 |
+
# Crops in XYWH format
|
229 |
+
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
230 |
+
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
231 |
+
crop_boxes.append(box)
|
232 |
+
layer_idxs.append(i_layer + 1)
|
233 |
+
|
234 |
+
return crop_boxes, layer_idxs
|
235 |
+
|
236 |
+
|
237 |
+
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
238 |
+
x0, y0, _, _ = crop_box
|
239 |
+
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
240 |
+
# Check if boxes has a channel dimension
|
241 |
+
if len(boxes.shape) == 3:
|
242 |
+
offset = offset.unsqueeze(1)
|
243 |
+
return boxes + offset
|
244 |
+
|
245 |
+
|
246 |
+
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
247 |
+
x0, y0, _, _ = crop_box
|
248 |
+
offset = torch.tensor([[x0, y0]], device=points.device)
|
249 |
+
# Check if points has a channel dimension
|
250 |
+
if len(points.shape) == 3:
|
251 |
+
offset = offset.unsqueeze(1)
|
252 |
+
return points + offset
|
253 |
+
|
254 |
+
|
255 |
+
def uncrop_masks(
|
256 |
+
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
257 |
+
) -> torch.Tensor:
|
258 |
+
x0, y0, x1, y1 = crop_box
|
259 |
+
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
260 |
+
return masks
|
261 |
+
# Coordinate transform masks
|
262 |
+
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
263 |
+
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
264 |
+
return torch.nn.functional.pad(masks, pad, value=0)
|
265 |
+
|
266 |
+
|
267 |
+
def remove_small_regions(
|
268 |
+
mask: np.ndarray, area_thresh: float, mode: str
|
269 |
+
) -> Tuple[np.ndarray, bool]:
|
270 |
+
"""
|
271 |
+
Removes small disconnected regions and holes in a mask. Returns the
|
272 |
+
mask and an indicator of if the mask has been modified.
|
273 |
+
"""
|
274 |
+
import cv2 # type: ignore
|
275 |
+
|
276 |
+
assert mode in ["holes", "islands"]
|
277 |
+
correct_holes = mode == "holes"
|
278 |
+
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
279 |
+
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
280 |
+
sizes = stats[:, -1][1:] # Row 0 is background label
|
281 |
+
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
282 |
+
if len(small_regions) == 0:
|
283 |
+
return mask, False
|
284 |
+
fill_labels = [0] + small_regions
|
285 |
+
if not correct_holes:
|
286 |
+
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
287 |
+
# If every region is below threshold, keep largest
|
288 |
+
if len(fill_labels) == 0:
|
289 |
+
fill_labels = [int(np.argmax(sizes)) + 1]
|
290 |
+
mask = np.isin(regions, fill_labels)
|
291 |
+
return mask, True
|
292 |
+
|
293 |
+
|
294 |
+
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
295 |
+
from pycocotools import mask as mask_utils # type: ignore
|
296 |
+
|
297 |
+
h, w = uncompressed_rle["size"]
|
298 |
+
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
299 |
+
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
300 |
+
return rle
|
301 |
+
|
302 |
+
|
303 |
+
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
304 |
+
"""
|
305 |
+
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
306 |
+
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
307 |
+
"""
|
308 |
+
# torch.max below raises an error on empty inputs, just skip in this case
|
309 |
+
if torch.numel(masks) == 0:
|
310 |
+
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
311 |
+
|
312 |
+
# Normalize shape to CxHxW
|
313 |
+
shape = masks.shape
|
314 |
+
h, w = shape[-2:]
|
315 |
+
if len(shape) > 2:
|
316 |
+
masks = masks.flatten(0, -3)
|
317 |
+
else:
|
318 |
+
masks = masks.unsqueeze(0)
|
319 |
+
|
320 |
+
# Get top and bottom edges
|
321 |
+
in_height, _ = torch.max(masks, dim=-1)
|
322 |
+
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
323 |
+
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
324 |
+
in_height_coords = in_height_coords + h * (~in_height)
|
325 |
+
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
326 |
+
|
327 |
+
# Get left and right edges
|
328 |
+
in_width, _ = torch.max(masks, dim=-2)
|
329 |
+
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
330 |
+
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
331 |
+
in_width_coords = in_width_coords + w * (~in_width)
|
332 |
+
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
333 |
+
|
334 |
+
# If the mask is empty the right edge will be to the left of the left edge.
|
335 |
+
# Replace these boxes with [0, 0, 0, 0]
|
336 |
+
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
337 |
+
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
338 |
+
out = out * (~empty_filter).unsqueeze(-1)
|
339 |
+
|
340 |
+
# Return to original shape
|
341 |
+
if len(shape) > 2:
|
342 |
+
out = out.reshape(*shape[:-2], 4)
|
343 |
+
else:
|
344 |
+
out = out[0]
|
345 |
+
|
346 |
+
return out
|
modules/sam/utils/onnx.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from typing import Tuple
|
12 |
+
|
13 |
+
from ..modeling import Sam
|
14 |
+
from .amg import calculate_stability_score
|
15 |
+
|
16 |
+
|
17 |
+
class SamOnnxModel(nn.Module):
|
18 |
+
"""
|
19 |
+
This model should not be called directly, but is used in ONNX export.
|
20 |
+
It combines the prompt encoder, mask decoder, and mask postprocessing of Sam,
|
21 |
+
with some functions modified to enable model tracing. Also supports extra
|
22 |
+
options controlling what information. See the ONNX export script for details.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
model: Sam,
|
28 |
+
return_single_mask: bool,
|
29 |
+
use_stability_score: bool = False,
|
30 |
+
return_extra_metrics: bool = False,
|
31 |
+
) -> None:
|
32 |
+
super().__init__()
|
33 |
+
self.mask_decoder = model.mask_decoder
|
34 |
+
self.model = model
|
35 |
+
self.img_size = model.image_encoder.img_size
|
36 |
+
self.return_single_mask = return_single_mask
|
37 |
+
self.use_stability_score = use_stability_score
|
38 |
+
self.stability_score_offset = 1.0
|
39 |
+
self.return_extra_metrics = return_extra_metrics
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def resize_longest_image_size(
|
43 |
+
input_image_size: torch.Tensor, longest_side: int
|
44 |
+
) -> torch.Tensor:
|
45 |
+
input_image_size = input_image_size.to(torch.float32)
|
46 |
+
scale = longest_side / torch.max(input_image_size)
|
47 |
+
transformed_size = scale * input_image_size
|
48 |
+
transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64)
|
49 |
+
return transformed_size
|
50 |
+
|
51 |
+
def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
|
52 |
+
point_coords = point_coords + 0.5
|
53 |
+
point_coords = point_coords / self.img_size
|
54 |
+
point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
|
55 |
+
point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
|
56 |
+
|
57 |
+
point_embedding = point_embedding * (point_labels != -1)
|
58 |
+
point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (
|
59 |
+
point_labels == -1
|
60 |
+
)
|
61 |
+
|
62 |
+
for i in range(self.model.prompt_encoder.num_point_embeddings):
|
63 |
+
point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[
|
64 |
+
i
|
65 |
+
].weight * (point_labels == i)
|
66 |
+
|
67 |
+
return point_embedding
|
68 |
+
|
69 |
+
def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
|
70 |
+
mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
|
71 |
+
mask_embedding = mask_embedding + (
|
72 |
+
1 - has_mask_input
|
73 |
+
) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1)
|
74 |
+
return mask_embedding
|
75 |
+
|
76 |
+
def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor:
|
77 |
+
masks = F.interpolate(
|
78 |
+
masks,
|
79 |
+
size=(self.img_size, self.img_size),
|
80 |
+
mode="bilinear",
|
81 |
+
align_corners=False,
|
82 |
+
)
|
83 |
+
|
84 |
+
prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size).to(torch.int64)
|
85 |
+
masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore
|
86 |
+
|
87 |
+
orig_im_size = orig_im_size.to(torch.int64)
|
88 |
+
h, w = orig_im_size[0], orig_im_size[1]
|
89 |
+
masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
|
90 |
+
return masks
|
91 |
+
|
92 |
+
def select_masks(
|
93 |
+
self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
|
94 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
95 |
+
# Determine if we should return the multiclick mask or not from the number of points.
|
96 |
+
# The reweighting is used to avoid control flow.
|
97 |
+
score_reweight = torch.tensor(
|
98 |
+
[[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]
|
99 |
+
).to(iou_preds.device)
|
100 |
+
score = iou_preds + (num_points - 2.5) * score_reweight
|
101 |
+
best_idx = torch.argmax(score, dim=1)
|
102 |
+
masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
|
103 |
+
iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
|
104 |
+
|
105 |
+
return masks, iou_preds
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def forward(
|
109 |
+
self,
|
110 |
+
image_embeddings: torch.Tensor,
|
111 |
+
point_coords: torch.Tensor,
|
112 |
+
point_labels: torch.Tensor,
|
113 |
+
mask_input: torch.Tensor,
|
114 |
+
has_mask_input: torch.Tensor,
|
115 |
+
orig_im_size: torch.Tensor,
|
116 |
+
):
|
117 |
+
sparse_embedding = self._embed_points(point_coords, point_labels)
|
118 |
+
dense_embedding = self._embed_masks(mask_input, has_mask_input)
|
119 |
+
|
120 |
+
masks, scores = self.model.mask_decoder.predict_masks(
|
121 |
+
image_embeddings=image_embeddings,
|
122 |
+
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
123 |
+
sparse_prompt_embeddings=sparse_embedding,
|
124 |
+
dense_prompt_embeddings=dense_embedding,
|
125 |
+
)
|
126 |
+
|
127 |
+
if self.use_stability_score:
|
128 |
+
scores = calculate_stability_score(
|
129 |
+
masks, self.model.mask_threshold, self.stability_score_offset
|
130 |
+
)
|
131 |
+
|
132 |
+
if self.return_single_mask:
|
133 |
+
masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
|
134 |
+
|
135 |
+
upscaled_masks = self.mask_postprocessing(masks, orig_im_size)
|
136 |
+
|
137 |
+
if self.return_extra_metrics:
|
138 |
+
stability_scores = calculate_stability_score(
|
139 |
+
upscaled_masks, self.model.mask_threshold, self.stability_score_offset
|
140 |
+
)
|
141 |
+
areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
|
142 |
+
return upscaled_masks, scores, stability_scores, areas, masks
|
143 |
+
|
144 |
+
return upscaled_masks, scores, masks
|
modules/sam/utils/transforms.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
11 |
+
|
12 |
+
from copy import deepcopy
|
13 |
+
from typing import Tuple
|
14 |
+
|
15 |
+
|
16 |
+
class ResizeLongestSide:
|
17 |
+
"""
|
18 |
+
Resizes images to the longest side 'target_length', as well as provides
|
19 |
+
methods for resizing coordinates and boxes. Provides methods for
|
20 |
+
transforming both numpy array and batched torch tensors.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, target_length: int) -> None:
|
24 |
+
self.target_length = target_length
|
25 |
+
|
26 |
+
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
27 |
+
"""
|
28 |
+
Expects a numpy array with shape HxWxC in uint8 format.
|
29 |
+
"""
|
30 |
+
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
|
31 |
+
return np.array(resize(to_pil_image(image), target_size))
|
32 |
+
|
33 |
+
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
34 |
+
"""
|
35 |
+
Expects a numpy array of length 2 in the final dimension. Requires the
|
36 |
+
original image size in (H, W) format.
|
37 |
+
"""
|
38 |
+
old_h, old_w = original_size
|
39 |
+
new_h, new_w = self.get_preprocess_shape(
|
40 |
+
original_size[0], original_size[1], self.target_length
|
41 |
+
)
|
42 |
+
coords = deepcopy(coords).astype(float)
|
43 |
+
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
44 |
+
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
45 |
+
return coords
|
46 |
+
|
47 |
+
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
48 |
+
"""
|
49 |
+
Expects a numpy array shape Bx4. Requires the original image size
|
50 |
+
in (H, W) format.
|
51 |
+
"""
|
52 |
+
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
53 |
+
return boxes.reshape(-1, 4)
|
54 |
+
|
55 |
+
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
56 |
+
"""
|
57 |
+
Expects batched images with shape BxCxHxW and float format. This
|
58 |
+
transformation may not exactly match apply_image. apply_image is
|
59 |
+
the transformation expected by the model.
|
60 |
+
"""
|
61 |
+
# Expects an image in BCHW format. May not exactly match apply_image.
|
62 |
+
target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length)
|
63 |
+
return F.interpolate(
|
64 |
+
image, target_size, mode="bilinear", align_corners=False, antialias=True
|
65 |
+
)
|
66 |
+
|
67 |
+
def apply_coords_torch(
|
68 |
+
self, coords: torch.Tensor, original_size: Tuple[int, ...]
|
69 |
+
) -> torch.Tensor:
|
70 |
+
"""
|
71 |
+
Expects a torch tensor with length 2 in the last dimension. Requires the
|
72 |
+
original image size in (H, W) format.
|
73 |
+
"""
|
74 |
+
old_h, old_w = original_size
|
75 |
+
new_h, new_w = self.get_preprocess_shape(
|
76 |
+
original_size[0], original_size[1], self.target_length
|
77 |
+
)
|
78 |
+
coords = deepcopy(coords).to(torch.float)
|
79 |
+
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
80 |
+
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
81 |
+
return coords
|
82 |
+
|
83 |
+
def apply_boxes_torch(
|
84 |
+
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
|
85 |
+
) -> torch.Tensor:
|
86 |
+
"""
|
87 |
+
Expects a torch tensor with shape Bx4. Requires the original image
|
88 |
+
size in (H, W) format.
|
89 |
+
"""
|
90 |
+
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
91 |
+
return boxes.reshape(-1, 4)
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
|
95 |
+
"""
|
96 |
+
Compute the output size given input size and target long side length.
|
97 |
+
"""
|
98 |
+
scale = long_side_length * 1.0 / max(oldh, oldw)
|
99 |
+
newh, neww = oldh * scale, oldw * scale
|
100 |
+
neww = int(neww + 0.5)
|
101 |
+
newh = int(newh + 0.5)
|
102 |
+
return (newh, neww)
|