import torch from mmengine.structures import InstanceData from typing import List, Any from mmpl.registry import MODELS from mmseg.utils import SampleList from .base_pler import BasePLer import torch.nn.functional as F from modules.sam import sam_model_registry @MODELS.register_module() class SegSAMAnchorPLer(BasePLer): def __init__(self, backbone, neck=None, panoptic_head=None, need_train_names=None, train_cfg=None, test_cfg=None, *args, **kwargs): super().__init__(*args, **kwargs) self.save_hyperparameters() self.need_train_names = need_train_names backbone_type = backbone.pop('type') self.backbone = sam_model_registry[backbone_type](**backbone) if neck is not None: self.neck = MODELS.build(neck) self.panoptic_head = MODELS.build(panoptic_head) self.train_cfg = train_cfg self.test_cfg = test_cfg def setup(self, stage: str) -> None: super().setup(stage) if self.need_train_names is not None: self._set_grad(self.need_train_names, noneed_train_names=[]) def init_weights(self): import ipdb; ipdb.set_trace() pass def train(self, mode=True): if self.need_train_names is not None: return self._set_train_module(mode, self.need_train_names) else: super().train(mode) return self @torch.no_grad() def extract_feat(self, batch_inputs): feat, inter_features = self.backbone.image_encoder(batch_inputs) return feat, inter_features def validation_step(self, batch, batch_idx): data = self.data_preprocessor(batch, False) batch_inputs = data['inputs'] batch_data_samples = data['data_samples'] x = self.extract_feat(batch_inputs) # x = ( # torch.rand(2, 256, 64, 64).to(self.device), [torch.rand(2, 64, 64, 768).to(self.device) for _ in range(12)]) results = self.panoptic_head.predict( x, batch_data_samples, self.backbone) self.val_evaluator.update(batch, results) def training_step(self, batch, batch_idx): data = self.data_preprocessor(batch, True) batch_inputs = data['inputs'] batch_data_samples = data['data_samples'] x = self.extract_feat(batch_inputs) # x = (torch.rand(2, 256, 64, 64).to(self.device), [torch.rand(2, 64, 64, 768).to(self.device) for _ in range(12)]) losses = self.panoptic_head.loss(x, batch_data_samples, self.backbone) parsed_losses, log_vars = self.parse_losses(losses) log_vars = {f'train_{k}': v for k, v in log_vars.items()} log_vars['loss'] = parsed_losses self.log_dict(log_vars, prog_bar=True) return log_vars def on_before_optimizer_step(self, optimizer) -> None: self.log_grad(module=self.panoptic_head) def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any: data = self.data_preprocessor(batch, False) batch_inputs = data['inputs'] batch_data_samples = data['data_samples'] x = self.extract_feat(batch_inputs) # x = ( # torch.rand(2, 256, 64, 64).to(self.device), [torch.rand(2, 64, 64, 768).to(self.device) for _ in range(12)]) results = self.panoptic_head.predict( x, batch_data_samples, self.backbone) return results