# Copyright (c) OpenMMLab. All rights reserved. from typing import List import torch import torch.nn as nn from mmcv.cnn import ConvModule from mmdet.utils import ConfigType, OptMultiConfig from mmyolo.registry import MODELS from ..layers import BepC3StageBlock, RepStageBlock from ..utils import make_round from .base_yolo_neck import BaseYOLONeck @MODELS.register_module() class YOLOv6RepPAFPN(BaseYOLONeck): """Path Aggregation Network used in YOLOv6. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale) deepen_factor (float): Depth multiplier, multiply number of blocks in CSP layer by this amount. Defaults to 1.0. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Defaults to 1.0. num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1. freeze_all(bool): Whether to freeze the model. norm_cfg (dict): Config dict for normalization layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001). act_cfg (dict): Config dict for activation layer. Defaults to dict(type='ReLU', inplace=True). block_cfg (dict): Config dict for the block used to build each layer. Defaults to dict(type='RepVGGBlock'). init_cfg (dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, in_channels: List[int], out_channels: int, deepen_factor: float = 1.0, widen_factor: float = 1.0, num_csp_blocks: int = 12, freeze_all: bool = False, norm_cfg: ConfigType = dict( type='BN', momentum=0.03, eps=0.001), act_cfg: ConfigType = dict(type='ReLU', inplace=True), block_cfg: ConfigType = dict(type='RepVGGBlock'), init_cfg: OptMultiConfig = None): self.num_csp_blocks = num_csp_blocks self.block_cfg = block_cfg super().__init__( in_channels=in_channels, out_channels=out_channels, deepen_factor=deepen_factor, widen_factor=widen_factor, freeze_all=freeze_all, norm_cfg=norm_cfg, act_cfg=act_cfg, init_cfg=init_cfg) def build_reduce_layer(self, idx: int) -> nn.Module: """build reduce layer. Args: idx (int): layer idx. Returns: nn.Module: The reduce layer. """ if idx == 2: layer = ConvModule( in_channels=int(self.in_channels[idx] * self.widen_factor), out_channels=int(self.out_channels[idx - 1] * self.widen_factor), kernel_size=1, stride=1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) else: layer = nn.Identity() return layer def build_upsample_layer(self, idx: int) -> nn.Module: """build upsample layer. Args: idx (int): layer idx. Returns: nn.Module: The upsample layer. """ return nn.ConvTranspose2d( in_channels=int(self.out_channels[idx - 1] * self.widen_factor), out_channels=int(self.out_channels[idx - 1] * self.widen_factor), kernel_size=2, stride=2, bias=True) def build_top_down_layer(self, idx: int) -> nn.Module: """build top down layer. Args: idx (int): layer idx. Returns: nn.Module: The top down layer. """ block_cfg = self.block_cfg.copy() layer0 = RepStageBlock( in_channels=int( (self.out_channels[idx - 1] + self.in_channels[idx - 1]) * self.widen_factor), out_channels=int(self.out_channels[idx - 1] * self.widen_factor), num_blocks=make_round(self.num_csp_blocks, self.deepen_factor), block_cfg=block_cfg) if idx == 1: return layer0 elif idx == 2: layer1 = ConvModule( in_channels=int(self.out_channels[idx - 1] * self.widen_factor), out_channels=int(self.out_channels[idx - 2] * self.widen_factor), kernel_size=1, stride=1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) return nn.Sequential(layer0, layer1) def build_downsample_layer(self, idx: int) -> nn.Module: """build downsample layer. Args: idx (int): layer idx. Returns: nn.Module: The downsample layer. """ return ConvModule( in_channels=int(self.out_channels[idx] * self.widen_factor), out_channels=int(self.out_channels[idx] * self.widen_factor), kernel_size=3, stride=2, padding=3 // 2, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def build_bottom_up_layer(self, idx: int) -> nn.Module: """build bottom up layer. Args: idx (int): layer idx. Returns: nn.Module: The bottom up layer. """ block_cfg = self.block_cfg.copy() return RepStageBlock( in_channels=int(self.out_channels[idx] * 2 * self.widen_factor), out_channels=int(self.out_channels[idx + 1] * self.widen_factor), num_blocks=make_round(self.num_csp_blocks, self.deepen_factor), block_cfg=block_cfg) def build_out_layer(self, *args, **kwargs) -> nn.Module: """build out layer.""" return nn.Identity() def init_weights(self): if self.init_cfg is None: """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() else: super().init_weights() @MODELS.register_module() class YOLOv6CSPRepPAFPN(YOLOv6RepPAFPN): """Path Aggregation Network used in YOLOv6. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale) deepen_factor (float): Depth multiplier, multiply number of blocks in CSP layer by this amount. Defaults to 1.0. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Defaults to 1.0. num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1. freeze_all(bool): Whether to freeze the model. norm_cfg (dict): Config dict for normalization layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001). act_cfg (dict): Config dict for activation layer. Defaults to dict(type='ReLU', inplace=True). block_cfg (dict): Config dict for the block used to build each layer. Defaults to dict(type='RepVGGBlock'). block_act_cfg (dict): Config dict for activation layer used in each stage. Defaults to dict(type='SiLU', inplace=True). init_cfg (dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, in_channels: List[int], out_channels: int, deepen_factor: float = 1.0, widen_factor: float = 1.0, hidden_ratio: float = 0.5, num_csp_blocks: int = 12, freeze_all: bool = False, norm_cfg: ConfigType = dict( type='BN', momentum=0.03, eps=0.001), act_cfg: ConfigType = dict(type='ReLU', inplace=True), block_act_cfg: ConfigType = dict(type='SiLU', inplace=True), block_cfg: ConfigType = dict(type='RepVGGBlock'), init_cfg: OptMultiConfig = None): self.hidden_ratio = hidden_ratio self.block_act_cfg = block_act_cfg super().__init__( in_channels=in_channels, out_channels=out_channels, deepen_factor=deepen_factor, widen_factor=widen_factor, num_csp_blocks=num_csp_blocks, freeze_all=freeze_all, norm_cfg=norm_cfg, act_cfg=act_cfg, block_cfg=block_cfg, init_cfg=init_cfg) def build_top_down_layer(self, idx: int) -> nn.Module: """build top down layer. Args: idx (int): layer idx. Returns: nn.Module: The top down layer. """ block_cfg = self.block_cfg.copy() layer0 = BepC3StageBlock( in_channels=int( (self.out_channels[idx - 1] + self.in_channels[idx - 1]) * self.widen_factor), out_channels=int(self.out_channels[idx - 1] * self.widen_factor), num_blocks=make_round(self.num_csp_blocks, self.deepen_factor), block_cfg=block_cfg, hidden_ratio=self.hidden_ratio, norm_cfg=self.norm_cfg, act_cfg=self.block_act_cfg) if idx == 1: return layer0 elif idx == 2: layer1 = ConvModule( in_channels=int(self.out_channels[idx - 1] * self.widen_factor), out_channels=int(self.out_channels[idx - 2] * self.widen_factor), kernel_size=1, stride=1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) return nn.Sequential(layer0, layer1) def build_bottom_up_layer(self, idx: int) -> nn.Module: """build bottom up layer. Args: idx (int): layer idx. Returns: nn.Module: The bottom up layer. """ block_cfg = self.block_cfg.copy() return BepC3StageBlock( in_channels=int(self.out_channels[idx] * 2 * self.widen_factor), out_channels=int(self.out_channels[idx + 1] * self.widen_factor), num_blocks=make_round(self.num_csp_blocks, self.deepen_factor), block_cfg=block_cfg, hidden_ratio=self.hidden_ratio, norm_cfg=self.norm_cfg, act_cfg=self.block_act_cfg)