Spaces:
Runtime error
Runtime error
File size: 5,413 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright (c) OpenMMLab. All rights reserved.
import xml.etree.ElementTree as ET
from typing import List, Optional, Union
from mmengine import get_file_backend, list_from_file
from mmcls.registry import DATASETS
from .base_dataset import expanduser
from .categories import VOC2007_CATEGORIES
from .multi_label import MultiLabelDataset
@DATASETS.register_module()
class VOC(MultiLabelDataset):
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Dataset.
After decompression, the dataset directory structure is as follows:
VOC dataset directory: ::
VOC2007 (data_root)/
βββ JPEGImages (data_prefix['img_path'])
β βββ xxx.jpg
β βββ xxy.jpg
β βββ ...
βββ Annotations (data_prefix['ann_path'])
β βββ xxx.xml
β βββ xxy.xml
β βββ ...
βββ ImageSets (directory contains various imageset file)
Extra difficult label is in VOC annotations, we will use
`gt_label_difficult` to record the difficult labels in each sample
and corresponding evaluation should take care of this field
to calculate metrics. Usually, difficult labels are reckoned as
negative in defaults.
Args:
data_root (str): The root directory for VOC dataset.
image_set_path (str): The path of image set, The file which
lists image ids of the sub dataset, and this path is relative
to ``data_root``.
data_prefix (dict): Prefix for data and annotation, keyword
'img_path' and 'ann_path' can be set. Defaults to be
``dict(img_path='JPEGImages', ann_path='Annotations')``.
test_mode (bool): ``test_mode=True`` means in test phase.
It determines to use the training set or test set.
metainfo (dict, optional): Meta information for dataset, such as
categories information. Defaults to None.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
""" # noqa: E501
METAINFO = {'classes': VOC2007_CATEGORIES}
def __init__(self,
data_root: str,
image_set_path: str,
data_prefix: Union[str, dict] = dict(
img_path='JPEGImages', ann_path='Annotations'),
test_mode: bool = False,
metainfo: Optional[dict] = None,
**kwargs):
if isinstance(data_prefix, str):
data_prefix = dict(img_path=expanduser(data_prefix))
assert isinstance(data_prefix, dict) and 'img_path' in data_prefix, \
'`data_prefix` must be a dict with key img_path'
if test_mode is False:
assert 'ann_path' in data_prefix and data_prefix[
'ann_path'] is not None, \
'"ann_path" must be set in `data_prefix` if `test_mode` is' \
' False.'
self.data_root = data_root
self.backend = get_file_backend(data_root, enable_singleton=True)
self.image_set_path = self.backend.join_path(data_root, image_set_path)
super().__init__(
ann_file='',
metainfo=metainfo,
data_root=data_root,
data_prefix=data_prefix,
test_mode=test_mode,
**kwargs)
@property
def ann_prefix(self):
"""The prefix of images."""
if 'ann_path' in self.data_prefix:
return self.data_prefix['ann_path']
else:
return None
def _get_labels_from_xml(self, img_id):
"""Get gt_labels and labels_difficult from xml file."""
xml_path = self.backend.join_path(self.ann_prefix, f'{img_id}.xml')
content = self.backend.get(xml_path)
root = ET.fromstring(content)
labels, labels_difficult = set(), set()
for obj in root.findall('object'):
label_name = obj.find('name').text
# in case customized dataset has wrong labels
# or CLASSES has been override.
if label_name not in self.CLASSES:
continue
label = self.class_to_idx[label_name]
difficult = int(obj.find('difficult').text)
if difficult:
labels_difficult.add(label)
else:
labels.add(label)
return list(labels), list(labels_difficult)
def load_data_list(self):
"""Load images and ground truth labels."""
data_list = []
img_ids = list_from_file(self.image_set_path)
for img_id in img_ids:
img_path = self.backend.join_path(self.img_prefix, f'{img_id}.jpg')
labels, labels_difficult = None, None
if self.ann_prefix is not None:
labels, labels_difficult = self._get_labels_from_xml(img_id)
info = dict(
img_path=img_path,
gt_label=labels,
gt_label_difficult=labels_difficult)
data_list.append(info)
return data_list
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [
f'Prefix of dataset: \t{self.data_root}',
f'Path of image set: \t{self.image_set_path}',
f'Prefix of images: \t{self.img_prefix}',
f'Prefix of annotations: \t{self.ann_prefix}'
]
return body
|