Spaces:
Runtime error
Runtime error
File size: 30,257 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import (constant_init, normal_init,
trunc_normal_init)
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.utils.attention import MultiheadAttention
from mmcls.models.utils.position_encoding import ConditionalPositionEncoding
from mmcls.registry import MODELS
class GlobalSubsampledAttention(MultiheadAttention):
"""Global Sub-sampled Attention (GSA) module.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
input_dims (int, optional): The input dimension, and if None,
use ``embed_dims``. Defaults to None.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
proj_drop (float): Dropout rate of the dropout layer after the
output projection. Defaults to 0.
dropout_layer (dict): The dropout config before adding the shortcut.
Defaults to ``dict(type='Dropout', drop_prob=0.)``.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
proj_bias (bool) If True, add a learnable bias to output projection.
Defaults to True.
v_shortcut (bool): Add a shortcut from value to output. It's usually
used if ``input_dims`` is different from ``embed_dims``.
Defaults to False.
sr_ratio (float): The ratio of spatial reduction in attention modules.
Defaults to 1.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
norm_cfg=dict(type='LN'),
qkv_bias=True,
sr_ratio=1,
**kwargs):
super(GlobalSubsampledAttention,
self).__init__(embed_dims, num_heads, **kwargs)
self.qkv_bias = qkv_bias
self.q = nn.Linear(self.input_dims, embed_dims, bias=qkv_bias)
self.kv = nn.Linear(self.input_dims, embed_dims * 2, bias=qkv_bias)
# remove self.qkv, here split into self.q, self.kv
delattr(self, 'qkv')
self.sr_ratio = sr_ratio
if sr_ratio > 1:
# use a conv as the spatial-reduction operation, the kernel_size
# and stride in conv are equal to the sr_ratio.
self.sr = Conv2d(
in_channels=embed_dims,
out_channels=embed_dims,
kernel_size=sr_ratio,
stride=sr_ratio)
# The ret[0] of build_norm_layer is norm name.
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
def forward(self, x, hw_shape):
B, N, C = x.shape
H, W = hw_shape
assert H * W == N, 'The product of h and w of hw_shape must be N, ' \
'which is the 2nd dim number of the input Tensor x.'
q = self.q(x).reshape(B, N, self.num_heads,
C // self.num_heads).permute(0, 2, 1, 3)
if self.sr_ratio > 1:
x = x.permute(0, 2, 1).reshape(B, C, *hw_shape) # BNC_2_BCHW
x = self.sr(x)
x = x.reshape(B, C, -1).permute(0, 2, 1) # BCHW_2_BNC
x = self.norm(x)
kv = self.kv(x).reshape(B, -1, 2, self.num_heads,
self.head_dims).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.out_drop(self.proj_drop(x))
if self.v_shortcut:
x = v.squeeze(1) + x
return x
class GSAEncoderLayer(BaseModule):
"""Implements one encoder layer with GlobalSubsampledAttention(GSA).
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Default: 0.0.
attn_drop_rate (float): The drop out rate for attention layer.
Default: 0.0.
drop_path_rate (float): Stochastic depth rate. Default 0.0.
num_fcs (int): The number of fully-connected layers for FFNs.
Default: 2.
qkv_bias (bool): Enable bias for qkv if True. Default: True
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
sr_ratio (float): The ratio of spatial reduction in attention modules.
Defaults to 1.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
num_fcs=2,
qkv_bias=True,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
sr_ratio=1.,
init_cfg=None):
super(GSAEncoderLayer, self).__init__(init_cfg=init_cfg)
self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1]
self.attn = GlobalSubsampledAttention(
embed_dims=embed_dims,
num_heads=num_heads,
attn_drop=attn_drop_rate,
proj_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
qkv_bias=qkv_bias,
norm_cfg=norm_cfg,
sr_ratio=sr_ratio)
self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1]
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=num_fcs,
ffn_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
act_cfg=act_cfg,
add_identity=False)
self.drop_path = build_dropout(
dict(type='DropPath', drop_prob=drop_path_rate)
) if drop_path_rate > 0. else nn.Identity()
def forward(self, x, hw_shape):
x = x + self.drop_path(self.attn(self.norm1(x), hw_shape))
x = x + self.drop_path(self.ffn(self.norm2(x)))
return x
class LocallyGroupedSelfAttention(BaseModule):
"""Locally-grouped Self Attention (LSA) module.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: False.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float, optional): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
window_size(int): Window size of LSA. Default: 1.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop_rate=0.,
proj_drop_rate=0.,
window_size=1,
init_cfg=None):
super(LocallyGroupedSelfAttention, self).__init__(init_cfg=init_cfg)
assert embed_dims % num_heads == 0, \
f'dim {embed_dims} should be divided by num_heads {num_heads}'
self.embed_dims = embed_dims
self.num_heads = num_heads
head_dim = embed_dims // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
self.window_size = window_size
def forward(self, x, hw_shape):
B, N, C = x.shape
H, W = hw_shape
x = x.view(B, H, W, C)
# pad feature maps to multiples of Local-groups
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
# calculate attention mask for LSA
Hp, Wp = x.shape[1:-1]
_h, _w = Hp // self.window_size, Wp // self.window_size
mask = torch.zeros((1, Hp, Wp), device=x.device)
mask[:, -pad_b:, :].fill_(1)
mask[:, :, -pad_r:].fill_(1)
# [B, _h, _w, window_size, window_size, C]
x = x.reshape(B, _h, self.window_size, _w, self.window_size,
C).transpose(2, 3)
mask = mask.reshape(1, _h, self.window_size, _w,
self.window_size).transpose(2, 3).reshape(
1, _h * _w,
self.window_size * self.window_size)
# [1, _h*_w, window_size*window_size, window_size*window_size]
attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3)
attn_mask = attn_mask.masked_fill(attn_mask != 0,
float(-1000.0)).masked_fill(
attn_mask == 0, float(0.0))
# [3, B, _w*_h, nhead, window_size*window_size, dim]
qkv = self.qkv(x).reshape(B, _h * _w,
self.window_size * self.window_size, 3,
self.num_heads, C // self.num_heads).permute(
3, 0, 1, 4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2]
# [B, _h*_w, n_head, window_size*window_size, window_size*window_size]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn + attn_mask.unsqueeze(2)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.window_size,
self.window_size, C)
x = attn.transpose(2, 3).reshape(B, _h * self.window_size,
_w * self.window_size, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LSAEncoderLayer(BaseModule):
"""Implements one encoder layer with LocallyGroupedSelfAttention(LSA).
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Default: 0.0.
attn_drop_rate (float, optional): Dropout ratio of attention weight.
Default: 0.0
drop_path_rate (float): Stochastic depth rate. Default 0.0.
num_fcs (int): The number of fully-connected layers for FFNs.
Default: 2.
qkv_bias (bool): Enable bias for qkv if True. Default: True
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
window_size (int): Window size of LSA. Default: 1.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
num_fcs=2,
qkv_bias=True,
qk_scale=None,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
window_size=1,
init_cfg=None):
super(LSAEncoderLayer, self).__init__(init_cfg=init_cfg)
self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1]
self.attn = LocallyGroupedSelfAttention(embed_dims, num_heads,
qkv_bias, qk_scale,
attn_drop_rate, drop_rate,
window_size)
self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1]
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=num_fcs,
ffn_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
act_cfg=act_cfg,
add_identity=False)
self.drop_path = build_dropout(
dict(type='DropPath', drop_prob=drop_path_rate)
) if drop_path_rate > 0. else nn.Identity()
def forward(self, x, hw_shape):
x = x + self.drop_path(self.attn(self.norm1(x), hw_shape))
x = x + self.drop_path(self.ffn(self.norm2(x)))
return x
@MODELS.register_module()
class PCPVT(BaseModule):
"""The backbone of Twins-PCPVT.
This backbone is the implementation of `Twins: Revisiting the Design
of Spatial Attention in Vision Transformers
<https://arxiv.org/abs/1512.03385>`_.
Args:
arch (dict, str): PCPVT architecture, a str value in arch zoo or a
detailed configuration dict with 7 keys, and the length of all the
values in dict should be the same:
- depths (List[int]): The number of encoder layers in each stage.
- embed_dims (List[int]): Embedding dimension in each stage.
- patch_sizes (List[int]): The patch sizes in each stage.
- num_heads (List[int]): Numbers of attention head in each stage.
- strides (List[int]): The strides in each stage.
- mlp_ratios (List[int]): The ratios of mlp in each stage.
- sr_ratios (List[int]): The ratios of GSA-encoder layers in each
stage.
in_channels (int): Number of input channels. Defaults to 3.
out_indices (tuple[int]): Output from which stages.
Defaults to ``(3, )``.
qkv_bias (bool): Enable bias for qkv if True. Defaults to False.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
attn_drop_rate (float): The drop out rate for attention layer.
Defaults to 0.0
drop_path_rate (float): Stochastic depth rate. Defaults to 0.0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
norm_after_stage(bool, List[bool]): Add extra norm after each stage.
Defaults to False.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
Examples:
>>> from mmcls.models import PCPVT
>>> import torch
>>> pcpvt_cfg = {'arch': "small",
>>> 'norm_after_stage': [False, False, False, True]}
>>> model = PCPVT(**pcpvt_cfg)
>>> x = torch.rand(1, 3, 224, 224)
>>> outputs = model(x)
>>> print(outputs[-1].shape)
torch.Size([1, 512, 7, 7])
>>> pcpvt_cfg['norm_after_stage'] = [True, True, True, True]
>>> pcpvt_cfg['out_indices'] = (0, 1, 2, 3)
>>> model = PCPVT(**pcpvt_cfg)
>>> outputs = model(x)
>>> for feat in outputs:
>>> print(feat.shape)
torch.Size([1, 64, 56, 56])
torch.Size([1, 128, 28, 28])
torch.Size([1, 320, 14, 14])
torch.Size([1, 512, 7, 7])
"""
arch_zoo = {
**dict.fromkeys(['s', 'small'],
{'embed_dims': [64, 128, 320, 512],
'depths': [3, 4, 6, 3],
'num_heads': [1, 2, 5, 8],
'patch_sizes': [4, 2, 2, 2],
'strides': [4, 2, 2, 2],
'mlp_ratios': [8, 8, 4, 4],
'sr_ratios': [8, 4, 2, 1]}),
**dict.fromkeys(['b', 'base'],
{'embed_dims': [64, 128, 320, 512],
'depths': [3, 4, 18, 3],
'num_heads': [1, 2, 5, 8],
'patch_sizes': [4, 2, 2, 2],
'strides': [4, 2, 2, 2],
'mlp_ratios': [8, 8, 4, 4],
'sr_ratios': [8, 4, 2, 1]}),
**dict.fromkeys(['l', 'large'],
{'embed_dims': [64, 128, 320, 512],
'depths': [3, 8, 27, 3],
'num_heads': [1, 2, 5, 8],
'patch_sizes': [4, 2, 2, 2],
'strides': [4, 2, 2, 2],
'mlp_ratios': [8, 8, 4, 4],
'sr_ratios': [8, 4, 2, 1]}),
} # yapf: disable
essential_keys = {
'embed_dims', 'depths', 'num_heads', 'patch_sizes', 'strides',
'mlp_ratios', 'sr_ratios'
}
def __init__(self,
arch,
in_channels=3,
out_indices=(3, ),
qkv_bias=False,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN'),
norm_after_stage=False,
init_cfg=None):
super(PCPVT, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
assert isinstance(arch, dict) and (
set(arch) == self.essential_keys
), f'Custom arch needs a dict with keys {self.essential_keys}.'
self.arch_settings = arch
self.depths = self.arch_settings['depths']
self.embed_dims = self.arch_settings['embed_dims']
self.patch_sizes = self.arch_settings['patch_sizes']
self.strides = self.arch_settings['strides']
self.mlp_ratios = self.arch_settings['mlp_ratios']
self.num_heads = self.arch_settings['num_heads']
self.sr_ratios = self.arch_settings['sr_ratios']
self.num_extra_tokens = 0 # there is no cls-token in Twins
self.num_stage = len(self.depths)
for key, value in self.arch_settings.items():
assert isinstance(value, list) and len(value) == self.num_stage, (
'Length of setting item in arch dict must be type of list and'
' have the same length.')
# patch_embeds
self.patch_embeds = ModuleList()
self.position_encoding_drops = ModuleList()
self.stages = ModuleList()
for i in range(self.num_stage):
# use in_channels of the model in the first stage
if i == 0:
stage_in_channels = in_channels
else:
stage_in_channels = self.embed_dims[i - 1]
self.patch_embeds.append(
PatchEmbed(
in_channels=stage_in_channels,
embed_dims=self.embed_dims[i],
conv_type='Conv2d',
kernel_size=self.patch_sizes[i],
stride=self.strides[i],
padding='corner',
norm_cfg=dict(type='LN')))
self.position_encoding_drops.append(nn.Dropout(p=drop_rate))
# PEGs
self.position_encodings = ModuleList([
ConditionalPositionEncoding(embed_dim, embed_dim)
for embed_dim in self.embed_dims
])
# stochastic depth
total_depth = sum(self.depths)
self.dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
] # stochastic depth decay rule
cur = 0
for k in range(len(self.depths)):
_block = ModuleList([
GSAEncoderLayer(
embed_dims=self.embed_dims[k],
num_heads=self.num_heads[k],
feedforward_channels=self.mlp_ratios[k] *
self.embed_dims[k],
attn_drop_rate=attn_drop_rate,
drop_rate=drop_rate,
drop_path_rate=self.dpr[cur + i],
num_fcs=2,
qkv_bias=qkv_bias,
act_cfg=dict(type='GELU'),
norm_cfg=norm_cfg,
sr_ratio=self.sr_ratios[k]) for i in range(self.depths[k])
])
self.stages.append(_block)
cur += self.depths[k]
self.out_indices = out_indices
assert isinstance(norm_after_stage, (bool, list))
if isinstance(norm_after_stage, bool):
self.norm_after_stage = [norm_after_stage] * self.num_stage
else:
self.norm_after_stage = norm_after_stage
assert len(self.norm_after_stage) == self.num_stage, \
(f'Number of norm_after_stage({len(self.norm_after_stage)}) should'
f' be equal to the number of stages({self.num_stage}).')
for i, has_norm in enumerate(self.norm_after_stage):
assert isinstance(has_norm, bool), 'norm_after_stage should be ' \
'bool or List[bool].'
if has_norm and norm_cfg is not None:
norm_layer = build_norm_layer(norm_cfg, self.embed_dims[i])[1]
else:
norm_layer = nn.Identity()
self.add_module(f'norm_after_stage{i}', norm_layer)
def init_weights(self):
if self.init_cfg is not None:
super(PCPVT, self).init_weights()
else:
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_init(m, std=.02, bias=0.)
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
constant_init(m, val=1.0, bias=0.)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[
1] * m.out_channels
fan_out //= m.groups
normal_init(
m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0)
def forward(self, x):
outputs = list()
b = x.shape[0]
for i in range(self.num_stage):
x, hw_shape = self.patch_embeds[i](x)
h, w = hw_shape
x = self.position_encoding_drops[i](x)
for j, blk in enumerate(self.stages[i]):
x = blk(x, hw_shape)
if j == 0:
x = self.position_encodings[i](x, hw_shape)
norm_layer = getattr(self, f'norm_after_stage{i}')
x = norm_layer(x)
x = x.reshape(b, h, w, -1).permute(0, 3, 1, 2).contiguous()
if i in self.out_indices:
outputs.append(x)
return tuple(outputs)
@MODELS.register_module()
class SVT(PCPVT):
"""The backbone of Twins-SVT.
This backbone is the implementation of `Twins: Revisiting the Design
of Spatial Attention in Vision Transformers
<https://arxiv.org/abs/1512.03385>`_.
Args:
arch (dict, str): SVT architecture, a str value in arch zoo or a
detailed configuration dict with 8 keys, and the length of all the
values in dict should be the same:
- depths (List[int]): The number of encoder layers in each stage.
- embed_dims (List[int]): Embedding dimension in each stage.
- patch_sizes (List[int]): The patch sizes in each stage.
- num_heads (List[int]): Numbers of attention head in each stage.
- strides (List[int]): The strides in each stage.
- mlp_ratios (List[int]): The ratios of mlp in each stage.
- sr_ratios (List[int]): The ratios of GSA-encoder layers in each
stage.
- windiow_sizes (List[int]): The window sizes in LSA-encoder layers
in each stage.
in_channels (int): Number of input channels. Defaults to 3.
out_indices (tuple[int]): Output from which stages.
Defaults to (3, ).
qkv_bias (bool): Enable bias for qkv if True. Defaults to False.
drop_rate (float): Dropout rate. Defaults to 0.
attn_drop_rate (float): Dropout ratio of attention weight.
Defaults to 0.0
drop_path_rate (float): Stochastic depth rate. Defaults to 0.2.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
norm_after_stage(bool, List[bool]): Add extra norm after each stage.
Defaults to False.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
Examples:
>>> from mmcls.models import SVT
>>> import torch
>>> svt_cfg = {'arch': "small",
>>> 'norm_after_stage': [False, False, False, True]}
>>> model = SVT(**svt_cfg)
>>> x = torch.rand(1, 3, 224, 224)
>>> outputs = model(x)
>>> print(outputs[-1].shape)
torch.Size([1, 512, 7, 7])
>>> svt_cfg["out_indices"] = (0, 1, 2, 3)
>>> svt_cfg["norm_after_stage"] = [True, True, True, True]
>>> model = SVT(**svt_cfg)
>>> output = model(x)
>>> for feat in output:
>>> print(feat.shape)
torch.Size([1, 64, 56, 56])
torch.Size([1, 128, 28, 28])
torch.Size([1, 320, 14, 14])
torch.Size([1, 512, 7, 7])
"""
arch_zoo = {
**dict.fromkeys(['s', 'small'],
{'embed_dims': [64, 128, 256, 512],
'depths': [2, 2, 10, 4],
'num_heads': [2, 4, 8, 16],
'patch_sizes': [4, 2, 2, 2],
'strides': [4, 2, 2, 2],
'mlp_ratios': [4, 4, 4, 4],
'sr_ratios': [8, 4, 2, 1],
'window_sizes': [7, 7, 7, 7]}),
**dict.fromkeys(['b', 'base'],
{'embed_dims': [96, 192, 384, 768],
'depths': [2, 2, 18, 2],
'num_heads': [3, 6, 12, 24],
'patch_sizes': [4, 2, 2, 2],
'strides': [4, 2, 2, 2],
'mlp_ratios': [4, 4, 4, 4],
'sr_ratios': [8, 4, 2, 1],
'window_sizes': [7, 7, 7, 7]}),
**dict.fromkeys(['l', 'large'],
{'embed_dims': [128, 256, 512, 1024],
'depths': [2, 2, 18, 2],
'num_heads': [4, 8, 16, 32],
'patch_sizes': [4, 2, 2, 2],
'strides': [4, 2, 2, 2],
'mlp_ratios': [4, 4, 4, 4],
'sr_ratios': [8, 4, 2, 1],
'window_sizes': [7, 7, 7, 7]}),
} # yapf: disable
essential_keys = {
'embed_dims', 'depths', 'num_heads', 'patch_sizes', 'strides',
'mlp_ratios', 'sr_ratios', 'window_sizes'
}
def __init__(self,
arch,
in_channels=3,
out_indices=(3, ),
qkv_bias=False,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.0,
norm_cfg=dict(type='LN'),
norm_after_stage=False,
init_cfg=None):
super(SVT, self).__init__(arch, in_channels, out_indices, qkv_bias,
drop_rate, attn_drop_rate, drop_path_rate,
norm_cfg, norm_after_stage, init_cfg)
self.window_sizes = self.arch_settings['window_sizes']
for k in range(self.num_stage):
for i in range(self.depths[k]):
# in even-numbered layers of each stage, replace GSA with LSA
if i % 2 == 0:
ffn_channels = self.mlp_ratios[k] * self.embed_dims[k]
self.stages[k][i] = \
LSAEncoderLayer(
embed_dims=self.embed_dims[k],
num_heads=self.num_heads[k],
feedforward_channels=ffn_channels,
drop_rate=drop_rate,
norm_cfg=norm_cfg,
attn_drop_rate=attn_drop_rate,
drop_path_rate=self.dpr[sum(self.depths[:k])+i],
qkv_bias=qkv_bias,
window_size=self.window_sizes[k])
|