File size: 9,136 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmengine.model import BaseModule
from torch import Tensor

from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from .se_layer import ChannelAttention


class DarknetBottleneck(BaseModule):
    """The basic bottleneck block used in Darknet.

    Each ResBlock consists of two ConvModules and the input is added to the
    final output. Each ConvModule is composed of Conv, BN, and LeakyReLU.
    The first convLayer has filter size of 1x1 and the second one has the
    filter size of 3x3.

    Args:
        in_channels (int): The input channels of this Module.
        out_channels (int): The output channels of this Module.
        expansion (float): The kernel size of the convolution.
            Defaults to 0.5.
        add_identity (bool): Whether to add identity to the out.
            Defaults to True.
        use_depthwise (bool): Whether to use depthwise separable convolution.
            Defaults to False.
        conv_cfg (dict): Config dict for convolution layer. Defaults to None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='Swish').
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 expansion: float = 0.5,
                 add_identity: bool = True,
                 use_depthwise: bool = False,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='Swish'),
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        hidden_channels = int(out_channels * expansion)
        conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
        self.conv1 = ConvModule(
            in_channels,
            hidden_channels,
            1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.conv2 = conv(
            hidden_channels,
            out_channels,
            3,
            stride=1,
            padding=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.add_identity = \
            add_identity and in_channels == out_channels

    def forward(self, x: Tensor) -> Tensor:
        """Forward function."""
        identity = x
        out = self.conv1(x)
        out = self.conv2(out)

        if self.add_identity:
            return out + identity
        else:
            return out


class CSPNeXtBlock(BaseModule):
    """The basic bottleneck block used in CSPNeXt.

    Args:
        in_channels (int): The input channels of this Module.
        out_channels (int): The output channels of this Module.
        expansion (float): Expand ratio of the hidden channel. Defaults to 0.5.
        add_identity (bool): Whether to add identity to the out. Only works
            when in_channels == out_channels. Defaults to True.
        use_depthwise (bool): Whether to use depthwise separable convolution.
            Defaults to False.
        kernel_size (int): The kernel size of the second convolution layer.
            Defaults to 5.
        conv_cfg (dict): Config dict for convolution layer. Defaults to None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='SiLU').
        init_cfg (:obj:`ConfigDict` or dict or list[dict] or
            list[:obj:`ConfigDict`], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 expansion: float = 0.5,
                 add_identity: bool = True,
                 use_depthwise: bool = False,
                 kernel_size: int = 5,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU'),
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        hidden_channels = int(out_channels * expansion)
        conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
        self.conv1 = conv(
            in_channels,
            hidden_channels,
            3,
            stride=1,
            padding=1,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.conv2 = DepthwiseSeparableConvModule(
            hidden_channels,
            out_channels,
            kernel_size,
            stride=1,
            padding=kernel_size // 2,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.add_identity = \
            add_identity and in_channels == out_channels

    def forward(self, x: Tensor) -> Tensor:
        """Forward function."""
        identity = x
        out = self.conv1(x)
        out = self.conv2(out)

        if self.add_identity:
            return out + identity
        else:
            return out


class CSPLayer(BaseModule):
    """Cross Stage Partial Layer.

    Args:
        in_channels (int): The input channels of the CSP layer.
        out_channels (int): The output channels of the CSP layer.
        expand_ratio (float): Ratio to adjust the number of channels of the
            hidden layer. Defaults to 0.5.
        num_blocks (int): Number of blocks. Defaults to 1.
        add_identity (bool): Whether to add identity in blocks.
            Defaults to True.
        use_cspnext_block (bool): Whether to use CSPNeXt block.
            Defaults to False.
        use_depthwise (bool): Whether to use depthwise separable convolution in
            blocks. Defaults to False.
        channel_attention (bool): Whether to add channel attention in each
            stage. Defaults to True.
        conv_cfg (dict, optional): Config dict for convolution layer.
            Defaults to None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN')
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='Swish')
        init_cfg (:obj:`ConfigDict` or dict or list[dict] or
            list[:obj:`ConfigDict`], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 expand_ratio: float = 0.5,
                 num_blocks: int = 1,
                 add_identity: bool = True,
                 use_depthwise: bool = False,
                 use_cspnext_block: bool = False,
                 channel_attention: bool = False,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='Swish'),
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        block = CSPNeXtBlock if use_cspnext_block else DarknetBottleneck
        mid_channels = int(out_channels * expand_ratio)
        self.channel_attention = channel_attention
        self.main_conv = ConvModule(
            in_channels,
            mid_channels,
            1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.short_conv = ConvModule(
            in_channels,
            mid_channels,
            1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.final_conv = ConvModule(
            2 * mid_channels,
            out_channels,
            1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)

        self.blocks = nn.Sequential(*[
            block(
                mid_channels,
                mid_channels,
                1.0,
                add_identity,
                use_depthwise,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg) for _ in range(num_blocks)
        ])
        if channel_attention:
            self.attention = ChannelAttention(2 * mid_channels)

    def forward(self, x: Tensor) -> Tensor:
        """Forward function."""
        x_short = self.short_conv(x)

        x_main = self.main_conv(x)
        x_main = self.blocks(x_main)

        x_final = torch.cat((x_main, x_short), dim=1)

        if self.channel_attention:
            x_final = self.attention(x_final)
        return self.final_conv(x_final)