File size: 11,274 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple, Union

import torch
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmcv.ops import MultiScaleDeformableAttention
from mmengine.model import ModuleList
from torch import Tensor, nn

from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer,
                          DetrTransformerEncoder, DetrTransformerEncoderLayer)
from .utils import inverse_sigmoid


class DeformableDetrTransformerEncoder(DetrTransformerEncoder):
    """Transformer encoder of Deformable DETR."""

    def _init_layers(self) -> None:
        """Initialize encoder layers."""
        self.layers = ModuleList([
            DeformableDetrTransformerEncoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.embed_dims = self.layers[0].embed_dims

    def forward(self, query: Tensor, query_pos: Tensor,
                key_padding_mask: Tensor, spatial_shapes: Tensor,
                level_start_index: Tensor, valid_ratios: Tensor,
                **kwargs) -> Tensor:
        """Forward function of Transformer encoder.

        Args:
            query (Tensor): The input query, has shape (bs, num_queries, dim).
            query_pos (Tensor): The positional encoding for query, has shape
                (bs, num_queries, dim).
            key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
                input. ByteTensor, has shape (bs, num_queries).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).

        Returns:
            Tensor: Output queries of Transformer encoder, which is also
            called 'encoder output embeddings' or 'memory', has shape
            (bs, num_queries, dim)
        """
        reference_points = self.get_encoder_reference_points(
            spatial_shapes, valid_ratios, device=query.device)
        for layer in self.layers:
            query = layer(
                query=query,
                query_pos=query_pos,
                key_padding_mask=key_padding_mask,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                valid_ratios=valid_ratios,
                reference_points=reference_points,
                **kwargs)
        return query

    @staticmethod
    def get_encoder_reference_points(
            spatial_shapes: Tensor, valid_ratios: Tensor,
            device: Union[torch.device, str]) -> Tensor:
        """Get the reference points used in encoder.

        Args:
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).
            device (obj:`device` or str): The device acquired by the
                `reference_points`.

        Returns:
            Tensor: Reference points used in decoder, has shape (bs, length,
            num_levels, 2).
        """

        reference_points_list = []
        for lvl, (H, W) in enumerate(spatial_shapes):
            ref_y, ref_x = torch.meshgrid(
                torch.linspace(
                    0.5, H - 0.5, H, dtype=torch.float32, device=device),
                torch.linspace(
                    0.5, W - 0.5, W, dtype=torch.float32, device=device))
            ref_y = ref_y.reshape(-1)[None] / (
                valid_ratios[:, None, lvl, 1] * H)
            ref_x = ref_x.reshape(-1)[None] / (
                valid_ratios[:, None, lvl, 0] * W)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        # [bs, sum(hw), num_level, 2]
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points


class DeformableDetrTransformerDecoder(DetrTransformerDecoder):
    """Transformer Decoder of Deformable DETR."""

    def _init_layers(self) -> None:
        """Initialize decoder layers."""
        self.layers = ModuleList([
            DeformableDetrTransformerDecoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.embed_dims = self.layers[0].embed_dims
        if self.post_norm_cfg is not None:
            raise ValueError('There is not post_norm in '
                             f'{self._get_name()}')

    def forward(self,
                query: Tensor,
                query_pos: Tensor,
                value: Tensor,
                key_padding_mask: Tensor,
                reference_points: Tensor,
                spatial_shapes: Tensor,
                level_start_index: Tensor,
                valid_ratios: Tensor,
                reg_branches: Optional[nn.Module] = None,
                **kwargs) -> Tuple[Tensor]:
        """Forward function of Transformer decoder.

        Args:
            query (Tensor): The input queries, has shape (bs, num_queries,
                dim).
            query_pos (Tensor): The input positional query, has shape
                (bs, num_queries, dim). It will be added to `query` before
                forward function.
            value (Tensor): The input values, has shape (bs, num_value, dim).
            key_padding_mask (Tensor): The `key_padding_mask` of `cross_attn`
                input. ByteTensor, has shape (bs, num_value).
            reference_points (Tensor): The initial reference, has shape
                (bs, num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h) when `as_two_stage` is `True`, otherwise has
                shape (bs, num_queries, 2) with the last dimension arranged
                as (cx, cy).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).
            reg_branches: (obj:`nn.ModuleList`, optional): Used for refining
                the regression results. Only would be passed when
                `with_box_refine` is `True`, otherwise would be `None`.

        Returns:
            tuple[Tensor]: Outputs of Deformable Transformer Decoder.

            - output (Tensor): Output embeddings of the last decoder, has
              shape (num_queries, bs, embed_dims) when `return_intermediate`
              is `False`. Otherwise, Intermediate output embeddings of all
              decoder layers, has shape (num_decoder_layers, num_queries, bs,
              embed_dims).
            - reference_points (Tensor): The reference of the last decoder
              layer, has shape (bs, num_queries, 4)  when `return_intermediate`
              is `False`. Otherwise, Intermediate references of all decoder
              layers, has shape (num_decoder_layers, bs, num_queries, 4). The
              coordinates are arranged as (cx, cy, w, h)
        """
        output = query
        intermediate = []
        intermediate_reference_points = []
        for layer_id, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = \
                    reference_points[:, :, None] * \
                    torch.cat([valid_ratios, valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = \
                    reference_points[:, :, None] * \
                    valid_ratios[:, None]
            output = layer(
                output,
                query_pos=query_pos,
                value=value,
                key_padding_mask=key_padding_mask,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                valid_ratios=valid_ratios,
                reference_points=reference_points_input,
                **kwargs)

            if reg_branches is not None:
                tmp_reg_preds = reg_branches[layer_id](output)
                if reference_points.shape[-1] == 4:
                    new_reference_points = tmp_reg_preds + inverse_sigmoid(
                        reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    assert reference_points.shape[-1] == 2
                    new_reference_points = tmp_reg_preds
                    new_reference_points[..., :2] = tmp_reg_preds[
                        ..., :2] + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(reference_points)

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(
                intermediate_reference_points)

        return output, reference_points


class DeformableDetrTransformerEncoderLayer(DetrTransformerEncoderLayer):
    """Encoder layer of Deformable DETR."""

    def _init_layers(self) -> None:
        """Initialize self_attn, ffn, and norms."""
        self.self_attn = MultiScaleDeformableAttention(**self.self_attn_cfg)
        self.embed_dims = self.self_attn.embed_dims
        self.ffn = FFN(**self.ffn_cfg)
        norms_list = [
            build_norm_layer(self.norm_cfg, self.embed_dims)[1]
            for _ in range(2)
        ]
        self.norms = ModuleList(norms_list)


class DeformableDetrTransformerDecoderLayer(DetrTransformerDecoderLayer):
    """Decoder layer of Deformable DETR."""

    def _init_layers(self) -> None:
        """Initialize self_attn, cross-attn, ffn, and norms."""
        self.self_attn = MultiheadAttention(**self.self_attn_cfg)
        self.cross_attn = MultiScaleDeformableAttention(**self.cross_attn_cfg)
        self.embed_dims = self.self_attn.embed_dims
        self.ffn = FFN(**self.ffn_cfg)
        norms_list = [
            build_norm_layer(self.norm_cfg, self.embed_dims)[1]
            for _ in range(3)
        ]
        self.norms = ModuleList(norms_list)