Spaces:
Runtime error
Runtime error
File size: 11,274 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple, Union
import torch
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmcv.ops import MultiScaleDeformableAttention
from mmengine.model import ModuleList
from torch import Tensor, nn
from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer,
DetrTransformerEncoder, DetrTransformerEncoderLayer)
from .utils import inverse_sigmoid
class DeformableDetrTransformerEncoder(DetrTransformerEncoder):
"""Transformer encoder of Deformable DETR."""
def _init_layers(self) -> None:
"""Initialize encoder layers."""
self.layers = ModuleList([
DeformableDetrTransformerEncoderLayer(**self.layer_cfg)
for _ in range(self.num_layers)
])
self.embed_dims = self.layers[0].embed_dims
def forward(self, query: Tensor, query_pos: Tensor,
key_padding_mask: Tensor, spatial_shapes: Tensor,
level_start_index: Tensor, valid_ratios: Tensor,
**kwargs) -> Tensor:
"""Forward function of Transformer encoder.
Args:
query (Tensor): The input query, has shape (bs, num_queries, dim).
query_pos (Tensor): The positional encoding for query, has shape
(bs, num_queries, dim).
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
input. ByteTensor, has shape (bs, num_queries).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
Returns:
Tensor: Output queries of Transformer encoder, which is also
called 'encoder output embeddings' or 'memory', has shape
(bs, num_queries, dim)
"""
reference_points = self.get_encoder_reference_points(
spatial_shapes, valid_ratios, device=query.device)
for layer in self.layers:
query = layer(
query=query,
query_pos=query_pos,
key_padding_mask=key_padding_mask,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reference_points=reference_points,
**kwargs)
return query
@staticmethod
def get_encoder_reference_points(
spatial_shapes: Tensor, valid_ratios: Tensor,
device: Union[torch.device, str]) -> Tensor:
"""Get the reference points used in encoder.
Args:
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
device (obj:`device` or str): The device acquired by the
`reference_points`.
Returns:
Tensor: Reference points used in decoder, has shape (bs, length,
num_levels, 2).
"""
reference_points_list = []
for lvl, (H, W) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(
0.5, H - 0.5, H, dtype=torch.float32, device=device),
torch.linspace(
0.5, W - 0.5, W, dtype=torch.float32, device=device))
ref_y = ref_y.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 1] * H)
ref_x = ref_x.reshape(-1)[None] / (
valid_ratios[:, None, lvl, 0] * W)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
# [bs, sum(hw), num_level, 2]
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
class DeformableDetrTransformerDecoder(DetrTransformerDecoder):
"""Transformer Decoder of Deformable DETR."""
def _init_layers(self) -> None:
"""Initialize decoder layers."""
self.layers = ModuleList([
DeformableDetrTransformerDecoderLayer(**self.layer_cfg)
for _ in range(self.num_layers)
])
self.embed_dims = self.layers[0].embed_dims
if self.post_norm_cfg is not None:
raise ValueError('There is not post_norm in '
f'{self._get_name()}')
def forward(self,
query: Tensor,
query_pos: Tensor,
value: Tensor,
key_padding_mask: Tensor,
reference_points: Tensor,
spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios: Tensor,
reg_branches: Optional[nn.Module] = None,
**kwargs) -> Tuple[Tensor]:
"""Forward function of Transformer decoder.
Args:
query (Tensor): The input queries, has shape (bs, num_queries,
dim).
query_pos (Tensor): The input positional query, has shape
(bs, num_queries, dim). It will be added to `query` before
forward function.
value (Tensor): The input values, has shape (bs, num_value, dim).
key_padding_mask (Tensor): The `key_padding_mask` of `cross_attn`
input. ByteTensor, has shape (bs, num_value).
reference_points (Tensor): The initial reference, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h) when `as_two_stage` is `True`, otherwise has
shape (bs, num_queries, 2) with the last dimension arranged
as (cx, cy).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
reg_branches: (obj:`nn.ModuleList`, optional): Used for refining
the regression results. Only would be passed when
`with_box_refine` is `True`, otherwise would be `None`.
Returns:
tuple[Tensor]: Outputs of Deformable Transformer Decoder.
- output (Tensor): Output embeddings of the last decoder, has
shape (num_queries, bs, embed_dims) when `return_intermediate`
is `False`. Otherwise, Intermediate output embeddings of all
decoder layers, has shape (num_decoder_layers, num_queries, bs,
embed_dims).
- reference_points (Tensor): The reference of the last decoder
layer, has shape (bs, num_queries, 4) when `return_intermediate`
is `False`. Otherwise, Intermediate references of all decoder
layers, has shape (num_decoder_layers, bs, num_queries, 4). The
coordinates are arranged as (cx, cy, w, h)
"""
output = query
intermediate = []
intermediate_reference_points = []
for layer_id, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = \
reference_points[:, :, None] * \
torch.cat([valid_ratios, valid_ratios], -1)[:, None]
else:
assert reference_points.shape[-1] == 2
reference_points_input = \
reference_points[:, :, None] * \
valid_ratios[:, None]
output = layer(
output,
query_pos=query_pos,
value=value,
key_padding_mask=key_padding_mask,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reference_points=reference_points_input,
**kwargs)
if reg_branches is not None:
tmp_reg_preds = reg_branches[layer_id](output)
if reference_points.shape[-1] == 4:
new_reference_points = tmp_reg_preds + inverse_sigmoid(
reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
assert reference_points.shape[-1] == 2
new_reference_points = tmp_reg_preds
new_reference_points[..., :2] = tmp_reg_preds[
..., :2] + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
if self.return_intermediate:
intermediate.append(output)
intermediate_reference_points.append(reference_points)
if self.return_intermediate:
return torch.stack(intermediate), torch.stack(
intermediate_reference_points)
return output, reference_points
class DeformableDetrTransformerEncoderLayer(DetrTransformerEncoderLayer):
"""Encoder layer of Deformable DETR."""
def _init_layers(self) -> None:
"""Initialize self_attn, ffn, and norms."""
self.self_attn = MultiScaleDeformableAttention(**self.self_attn_cfg)
self.embed_dims = self.self_attn.embed_dims
self.ffn = FFN(**self.ffn_cfg)
norms_list = [
build_norm_layer(self.norm_cfg, self.embed_dims)[1]
for _ in range(2)
]
self.norms = ModuleList(norms_list)
class DeformableDetrTransformerDecoderLayer(DetrTransformerDecoderLayer):
"""Decoder layer of Deformable DETR."""
def _init_layers(self) -> None:
"""Initialize self_attn, cross-attn, ffn, and norms."""
self.self_attn = MultiheadAttention(**self.self_attn_cfg)
self.cross_attn = MultiScaleDeformableAttention(**self.cross_attn_cfg)
self.embed_dims = self.self_attn.embed_dims
self.ffn = FFN(**self.ffn_cfg)
norms_list = [
build_norm_layer(self.norm_cfg, self.embed_dims)[1]
for _ in range(3)
]
self.norms = ModuleList(norms_list)
|