File size: 35,539 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
from typing import Optional, Sequence, Tuple, Union

import torch
import torch.nn.functional as F
from mmcv.cnn import (Linear, build_activation_layer, build_conv_layer,
                      build_norm_layer)
from mmcv.cnn.bricks.drop import Dropout
from mmengine.model import BaseModule, ModuleList
from mmengine.utils import to_2tuple
from torch import Tensor, nn

from mmdet.registry import MODELS
from mmdet.utils import OptConfigType, OptMultiConfig


def nlc_to_nchw(x: Tensor, hw_shape: Sequence[int]) -> Tensor:
    """Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.

    Args:
        x (Tensor): The input tensor of shape [N, L, C] before conversion.
        hw_shape (Sequence[int]): The height and width of output feature map.

    Returns:
        Tensor: The output tensor of shape [N, C, H, W] after conversion.
    """
    H, W = hw_shape
    assert len(x.shape) == 3
    B, L, C = x.shape
    assert L == H * W, 'The seq_len does not match H, W'
    return x.transpose(1, 2).reshape(B, C, H, W).contiguous()


def nchw_to_nlc(x):
    """Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.

    Args:
        x (Tensor): The input tensor of shape [N, C, H, W] before conversion.

    Returns:
        Tensor: The output tensor of shape [N, L, C] after conversion.
    """
    assert len(x.shape) == 4
    return x.flatten(2).transpose(1, 2).contiguous()


def coordinate_to_encoding(coord_tensor: Tensor,
                           num_feats: int = 128,
                           temperature: int = 10000,
                           scale: float = 2 * math.pi):
    """Convert coordinate tensor to positional encoding.

    Args:
        coord_tensor (Tensor): Coordinate tensor to be converted to
            positional encoding. With the last dimension as 2 or 4.
        num_feats (int, optional): The feature dimension for each position
            along x-axis or y-axis. Note the final returned dimension
            for each position is 2 times of this value. Defaults to 128.
        temperature (int, optional): The temperature used for scaling
            the position embedding. Defaults to 10000.
        scale (float, optional): A scale factor that scales the position
            embedding. The scale will be used only when `normalize` is True.
            Defaults to 2*pi.
    Returns:
        Tensor: Returned encoded positional tensor.
    """
    dim_t = torch.arange(
        num_feats, dtype=torch.float32, device=coord_tensor.device)
    dim_t = temperature**(2 * (dim_t // 2) / num_feats)
    x_embed = coord_tensor[..., 0] * scale
    y_embed = coord_tensor[..., 1] * scale
    pos_x = x_embed[..., None] / dim_t
    pos_y = y_embed[..., None] / dim_t
    pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()),
                        dim=-1).flatten(2)
    pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()),
                        dim=-1).flatten(2)
    if coord_tensor.size(-1) == 2:
        pos = torch.cat((pos_y, pos_x), dim=-1)
    elif coord_tensor.size(-1) == 4:
        w_embed = coord_tensor[..., 2] * scale
        pos_w = w_embed[..., None] / dim_t
        pos_w = torch.stack((pos_w[..., 0::2].sin(), pos_w[..., 1::2].cos()),
                            dim=-1).flatten(2)

        h_embed = coord_tensor[..., 3] * scale
        pos_h = h_embed[..., None] / dim_t
        pos_h = torch.stack((pos_h[..., 0::2].sin(), pos_h[..., 1::2].cos()),
                            dim=-1).flatten(2)

        pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=-1)
    else:
        raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
            coord_tensor.size(-1)))
    return pos


def inverse_sigmoid(x: Tensor, eps: float = 1e-5) -> Tensor:
    """Inverse function of sigmoid.

    Args:
        x (Tensor): The tensor to do the inverse.
        eps (float): EPS avoid numerical overflow. Defaults 1e-5.
    Returns:
        Tensor: The x has passed the inverse function of sigmoid, has the same
        shape with input.
    """
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1 / x2)


class AdaptivePadding(nn.Module):
    """Applies padding to input (if needed) so that input can get fully covered
    by filter you specified. It support two modes "same" and "corner". The
    "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around
    input. The "corner"  mode would pad zero to bottom right.

    Args:
        kernel_size (int | tuple): Size of the kernel:
        stride (int | tuple): Stride of the filter. Default: 1:
        dilation (int | tuple): Spacing between kernel elements.
            Default: 1
        padding (str): Support "same" and "corner", "corner" mode
            would pad zero to bottom right, and "same" mode would
            pad zero around input. Default: "corner".
    Example:
        >>> kernel_size = 16
        >>> stride = 16
        >>> dilation = 1
        >>> input = torch.rand(1, 1, 15, 17)
        >>> adap_pad = AdaptivePadding(
        >>>     kernel_size=kernel_size,
        >>>     stride=stride,
        >>>     dilation=dilation,
        >>>     padding="corner")
        >>> out = adap_pad(input)
        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
        >>> input = torch.rand(1, 1, 16, 17)
        >>> out = adap_pad(input)
        >>> assert (out.shape[2], out.shape[3]) == (16, 32)
    """

    def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'):

        super(AdaptivePadding, self).__init__()

        assert padding in ('same', 'corner')

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        padding = to_2tuple(padding)
        dilation = to_2tuple(dilation)

        self.padding = padding
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation

    def get_pad_shape(self, input_shape):
        input_h, input_w = input_shape
        kernel_h, kernel_w = self.kernel_size
        stride_h, stride_w = self.stride
        output_h = math.ceil(input_h / stride_h)
        output_w = math.ceil(input_w / stride_w)
        pad_h = max((output_h - 1) * stride_h +
                    (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0)
        pad_w = max((output_w - 1) * stride_w +
                    (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0)
        return pad_h, pad_w

    def forward(self, x):
        pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
        if pad_h > 0 or pad_w > 0:
            if self.padding == 'corner':
                x = F.pad(x, [0, pad_w, 0, pad_h])
            elif self.padding == 'same':
                x = F.pad(x, [
                    pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
                    pad_h - pad_h // 2
                ])
        return x


class PatchEmbed(BaseModule):
    """Image to Patch Embedding.

    We use a conv layer to implement PatchEmbed.

    Args:
        in_channels (int): The num of input channels. Default: 3
        embed_dims (int): The dimensions of embedding. Default: 768
        conv_type (str): The config dict for embedding
            conv layer type selection. Default: "Conv2d.
        kernel_size (int): The kernel_size of embedding conv. Default: 16.
        stride (int): The slide stride of embedding conv.
            Default: None (Would be set as `kernel_size`).
        padding (int | tuple | string ): The padding length of
            embedding conv. When it is a string, it means the mode
            of adaptive padding, support "same" and "corner" now.
            Default: "corner".
        dilation (int): The dilation rate of embedding conv. Default: 1.
        bias (bool): Bias of embed conv. Default: True.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: None.
        input_size (int | tuple | None): The size of input, which will be
            used to calculate the out size. Only work when `dynamic_size`
            is False. Default: None.
        init_cfg (`mmengine.ConfigDict`, optional): The Config for
            initialization. Default: None.
    """

    def __init__(self,
                 in_channels: int = 3,
                 embed_dims: int = 768,
                 conv_type: str = 'Conv2d',
                 kernel_size: int = 16,
                 stride: int = 16,
                 padding: Union[int, tuple, str] = 'corner',
                 dilation: int = 1,
                 bias: bool = True,
                 norm_cfg: OptConfigType = None,
                 input_size: Union[int, tuple] = None,
                 init_cfg: OptConfigType = None) -> None:
        super(PatchEmbed, self).__init__(init_cfg=init_cfg)

        self.embed_dims = embed_dims
        if stride is None:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adap_padding = AdaptivePadding(
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding)
            # disable the padding of conv
            padding = 0
        else:
            self.adap_padding = None
        padding = to_2tuple(padding)

        self.projection = build_conv_layer(
            dict(type=conv_type),
            in_channels=in_channels,
            out_channels=embed_dims,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias)

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
        else:
            self.norm = None

        if input_size:
            input_size = to_2tuple(input_size)
            # `init_out_size` would be used outside to
            # calculate the num_patches
            # when `use_abs_pos_embed` outside
            self.init_input_size = input_size
            if self.adap_padding:
                pad_h, pad_w = self.adap_padding.get_pad_shape(input_size)
                input_h, input_w = input_size
                input_h = input_h + pad_h
                input_w = input_w + pad_w
                input_size = (input_h, input_w)

            # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
            h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
                     (kernel_size[0] - 1) - 1) // stride[0] + 1
            w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
                     (kernel_size[1] - 1) - 1) // stride[1] + 1
            self.init_out_size = (h_out, w_out)
        else:
            self.init_input_size = None
            self.init_out_size = None

    def forward(self, x: Tensor) -> Tuple[Tensor, Tuple[int]]:
        """
        Args:
            x (Tensor): Has shape (B, C, H, W). In most case, C is 3.

        Returns:
            tuple: Contains merged results and its spatial shape.

                - x (Tensor): Has shape (B, out_h * out_w, embed_dims)
                - out_size (tuple[int]): Spatial shape of x, arrange as
                    (out_h, out_w).
        """

        if self.adap_padding:
            x = self.adap_padding(x)

        x = self.projection(x)
        out_size = (x.shape[2], x.shape[3])
        x = x.flatten(2).transpose(1, 2)
        if self.norm is not None:
            x = self.norm(x)
        return x, out_size


class PatchMerging(BaseModule):
    """Merge patch feature map.

    This layer groups feature map by kernel_size, and applies norm and linear
    layers to the grouped feature map. Our implementation uses `nn.Unfold` to
    merge patch, which is about 25% faster than original implementation.
    Instead, we need to modify pretrained models for compatibility.

    Args:
        in_channels (int): The num of input channels.
            to gets fully covered by filter and stride you specified..
            Default: True.
        out_channels (int): The num of output channels.
        kernel_size (int | tuple, optional): the kernel size in the unfold
            layer. Defaults to 2.
        stride (int | tuple, optional): the stride of the sliding blocks in the
            unfold layer. Default: None. (Would be set as `kernel_size`)
        padding (int | tuple | string ): The padding length of
            embedding conv. When it is a string, it means the mode
            of adaptive padding, support "same" and "corner" now.
            Default: "corner".
        dilation (int | tuple, optional): dilation parameter in the unfold
            layer. Default: 1.
        bias (bool, optional): Whether to add bias in linear layer or not.
            Defaults: False.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: dict(type='LN').
        init_cfg (dict, optional): The extra config for initialization.
            Default: None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: Optional[Union[int, tuple]] = 2,
                 stride: Optional[Union[int, tuple]] = None,
                 padding: Union[int, tuple, str] = 'corner',
                 dilation: Optional[Union[int, tuple]] = 1,
                 bias: Optional[bool] = False,
                 norm_cfg: OptConfigType = dict(type='LN'),
                 init_cfg: OptConfigType = None) -> None:
        super().__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.out_channels = out_channels
        if stride:
            stride = stride
        else:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adap_padding = AdaptivePadding(
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding)
            # disable the padding of unfold
            padding = 0
        else:
            self.adap_padding = None

        padding = to_2tuple(padding)
        self.sampler = nn.Unfold(
            kernel_size=kernel_size,
            dilation=dilation,
            padding=padding,
            stride=stride)

        sample_dim = kernel_size[0] * kernel_size[1] * in_channels

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
        else:
            self.norm = None

        self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)

    def forward(self, x: Tensor,
                input_size: Tuple[int]) -> Tuple[Tensor, Tuple[int]]:
        """
        Args:
            x (Tensor): Has shape (B, H*W, C_in).
            input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
                Default: None.

        Returns:
            tuple: Contains merged results and its spatial shape.

                - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
                - out_size (tuple[int]): Spatial shape of x, arrange as
                    (Merged_H, Merged_W).
        """
        B, L, C = x.shape
        assert isinstance(input_size, Sequence), f'Expect ' \
                                                 f'input_size is ' \
                                                 f'`Sequence` ' \
                                                 f'but get {input_size}'

        H, W = input_size
        assert L == H * W, 'input feature has wrong size'

        x = x.view(B, H, W, C).permute([0, 3, 1, 2])  # B, C, H, W
        # Use nn.Unfold to merge patch. About 25% faster than original method,
        # but need to modify pretrained model for compatibility

        if self.adap_padding:
            x = self.adap_padding(x)
            H, W = x.shape[-2:]

        x = self.sampler(x)
        # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)

        out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] *
                 (self.sampler.kernel_size[0] - 1) -
                 1) // self.sampler.stride[0] + 1
        out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] *
                 (self.sampler.kernel_size[1] - 1) -
                 1) // self.sampler.stride[1] + 1

        output_size = (out_h, out_w)
        x = x.transpose(1, 2)  # B, H/2*W/2, 4*C
        x = self.norm(x) if self.norm else x
        x = self.reduction(x)
        return x, output_size


class ConditionalAttention(BaseModule):
    """A wrapper of conditional attention, dropout and residual connection.

    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        attn_drop (float): A Dropout layer on attn_output_weights.
            Default: 0.0.
        proj_drop: A Dropout layer after `nn.MultiheadAttention`.
            Default: 0.0.
        cross_attn (bool): Whether the attention module is for cross attention.
            Default: False
        keep_query_pos (bool): Whether to transform query_pos before cross
            attention.
            Default: False.
        batch_first (bool): When it is True, Key, Query and Value are shape of
            (batch, n, embed_dim), otherwise (n, batch, embed_dim).
             Default: True.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims: int,
                 num_heads: int,
                 attn_drop: float = 0.,
                 proj_drop: float = 0.,
                 cross_attn: bool = False,
                 keep_query_pos: bool = False,
                 batch_first: bool = True,
                 init_cfg: OptMultiConfig = None):
        super().__init__(init_cfg=init_cfg)

        assert batch_first is True, 'Set `batch_first`\
        to False is NOT supported in ConditionalAttention. \
        First dimension of all DETRs in mmdet is `batch`, \
        please set `batch_first` to True.'

        self.cross_attn = cross_attn
        self.keep_query_pos = keep_query_pos
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.attn_drop = Dropout(attn_drop)
        self.proj_drop = Dropout(proj_drop)

        self._init_layers()

    def _init_layers(self):
        """Initialize layers for qkv projection."""
        embed_dims = self.embed_dims
        self.qcontent_proj = Linear(embed_dims, embed_dims)
        self.qpos_proj = Linear(embed_dims, embed_dims)
        self.kcontent_proj = Linear(embed_dims, embed_dims)
        self.kpos_proj = Linear(embed_dims, embed_dims)
        self.v_proj = Linear(embed_dims, embed_dims)
        if self.cross_attn:
            self.qpos_sine_proj = Linear(embed_dims, embed_dims)
        self.out_proj = Linear(embed_dims, embed_dims)

        nn.init.constant_(self.out_proj.bias, 0.)

    def forward_attn(self,
                     query: Tensor,
                     key: Tensor,
                     value: Tensor,
                     attn_mask: Tensor = None,
                     key_padding_mask: Tensor = None) -> Tuple[Tensor]:
        """Forward process for `ConditionalAttention`.

        Args:
            query (Tensor): The input query with shape [bs, num_queries,
                embed_dims].
            key (Tensor): The key tensor with shape [bs, num_keys,
                embed_dims].
                If None, the `query` will be used. Defaults to None.
            value (Tensor): The value tensor with same shape as `key`.
                Same in `nn.MultiheadAttention.forward`. Defaults to None.
                If None, the `key` will be used.
            attn_mask (Tensor): ByteTensor mask with shape [num_queries,
                num_keys]. Same in `nn.MultiheadAttention.forward`.
                Defaults to None.
            key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
                Defaults to None.
        Returns:
            Tuple[Tensor]: Attention outputs of shape :math:`(N, L, E)`,
            where :math:`N` is the batch size, :math:`L` is the target
            sequence length , and :math:`E` is the embedding dimension
            `embed_dim`. Attention weights per head of shape :math:`
            (num_heads, L, S)`. where :math:`N` is batch size, :math:`L`
            is target sequence length, and :math:`S` is the source sequence
            length.
        """
        assert key.size(1) == value.size(1), \
            f'{"key, value must have the same sequence length"}'
        assert query.size(0) == key.size(0) == value.size(0), \
            f'{"batch size must be equal for query, key, value"}'
        assert query.size(2) == key.size(2), \
            f'{"q_dims, k_dims must be equal"}'
        assert value.size(2) == self.embed_dims, \
            f'{"v_dims must be equal to embed_dims"}'

        bs, tgt_len, hidden_dims = query.size()
        _, src_len, _ = key.size()
        head_dims = hidden_dims // self.num_heads
        v_head_dims = self.embed_dims // self.num_heads
        assert head_dims * self.num_heads == hidden_dims, \
            f'{"hidden_dims must be divisible by num_heads"}'
        scaling = float(head_dims)**-0.5

        q = query * scaling
        k = key
        v = value

        if attn_mask is not None:
            assert attn_mask.dtype == torch.float32 or \
                   attn_mask.dtype == torch.float64 or \
                   attn_mask.dtype == torch.float16 or \
                   attn_mask.dtype == torch.uint8 or \
                   attn_mask.dtype == torch.bool, \
                   'Only float, byte, and bool types are supported for \
                    attn_mask'

            if attn_mask.dtype == torch.uint8:
                warnings.warn('Byte tensor for attn_mask is deprecated.\
                     Use bool tensor instead.')
                attn_mask = attn_mask.to(torch.bool)
            if attn_mask.dim() == 2:
                attn_mask = attn_mask.unsqueeze(0)
                if list(attn_mask.size()) != [1, query.size(1), key.size(1)]:
                    raise RuntimeError(
                        'The size of the 2D attn_mask is not correct.')
            elif attn_mask.dim() == 3:
                if list(attn_mask.size()) != [
                        bs * self.num_heads,
                        query.size(1),
                        key.size(1)
                ]:
                    raise RuntimeError(
                        'The size of the 3D attn_mask is not correct.')
            else:
                raise RuntimeError(
                    "attn_mask's dimension {} is not supported".format(
                        attn_mask.dim()))
        # attn_mask's dim is 3 now.

        if key_padding_mask is not None and key_padding_mask.dtype == int:
            key_padding_mask = key_padding_mask.to(torch.bool)

        q = q.contiguous().view(bs, tgt_len, self.num_heads,
                                head_dims).permute(0, 2, 1, 3).flatten(0, 1)
        if k is not None:
            k = k.contiguous().view(bs, src_len, self.num_heads,
                                    head_dims).permute(0, 2, 1,
                                                       3).flatten(0, 1)
        if v is not None:
            v = v.contiguous().view(bs, src_len, self.num_heads,
                                    v_head_dims).permute(0, 2, 1,
                                                         3).flatten(0, 1)

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bs
            assert key_padding_mask.size(1) == src_len

        attn_output_weights = torch.bmm(q, k.transpose(1, 2))
        assert list(attn_output_weights.size()) == [
            bs * self.num_heads, tgt_len, src_len
        ]

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_output_weights.masked_fill_(attn_mask, float('-inf'))
            else:
                attn_output_weights += attn_mask

        if key_padding_mask is not None:
            attn_output_weights = attn_output_weights.view(
                bs, self.num_heads, tgt_len, src_len)
            attn_output_weights = attn_output_weights.masked_fill(
                key_padding_mask.unsqueeze(1).unsqueeze(2),
                float('-inf'),
            )
            attn_output_weights = attn_output_weights.view(
                bs * self.num_heads, tgt_len, src_len)

        attn_output_weights = F.softmax(
            attn_output_weights -
            attn_output_weights.max(dim=-1, keepdim=True)[0],
            dim=-1)
        attn_output_weights = self.attn_drop(attn_output_weights)

        attn_output = torch.bmm(attn_output_weights, v)
        assert list(
            attn_output.size()) == [bs * self.num_heads, tgt_len, v_head_dims]
        attn_output = attn_output.view(bs, self.num_heads, tgt_len,
                                       v_head_dims).permute(0, 2, 1,
                                                            3).flatten(2)
        attn_output = self.out_proj(attn_output)

        # average attention weights over heads
        attn_output_weights = attn_output_weights.view(bs, self.num_heads,
                                                       tgt_len, src_len)
        return attn_output, attn_output_weights.sum(dim=1) / self.num_heads

    def forward(self,
                query: Tensor,
                key: Tensor,
                query_pos: Tensor = None,
                ref_sine_embed: Tensor = None,
                key_pos: Tensor = None,
                attn_mask: Tensor = None,
                key_padding_mask: Tensor = None,
                is_first: bool = False) -> Tensor:
        """Forward function for `ConditionalAttention`.
        Args:
            query (Tensor): The input query with shape [bs, num_queries,
                embed_dims].
            key (Tensor): The key tensor with shape [bs, num_keys,
                embed_dims].
                If None, the `query` will be used. Defaults to None.
            query_pos (Tensor): The positional encoding for query in self
                attention, with the same shape as `x`. If not None, it will
                be added to `x` before forward function.
                Defaults to None.
            query_sine_embed (Tensor): The positional encoding for query in
                cross attention, with the same shape as `x`. If not None, it
                will be added to `x` before forward function.
                Defaults to None.
            key_pos (Tensor): The positional encoding for `key`, with the
                same shape as `key`. Defaults to None. If not None, it will
                be added to `key` before forward function. If None, and
                `query_pos` has the same shape as `key`, then `query_pos`
                will be used for `key_pos`. Defaults to None.
            attn_mask (Tensor): ByteTensor mask with shape [num_queries,
                num_keys]. Same in `nn.MultiheadAttention.forward`.
                Defaults to None.
            key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
                Defaults to None.
            is_first (bool): A indicator to tell whether the current layer
                is the first layer of the decoder.
                Defaults to False.
        Returns:
            Tensor: forwarded results with shape
            [bs, num_queries, embed_dims].
        """

        if self.cross_attn:
            q_content = self.qcontent_proj(query)
            k_content = self.kcontent_proj(key)
            v = self.v_proj(key)

            bs, nq, c = q_content.size()
            _, hw, _ = k_content.size()

            k_pos = self.kpos_proj(key_pos)
            if is_first or self.keep_query_pos:
                q_pos = self.qpos_proj(query_pos)
                q = q_content + q_pos
                k = k_content + k_pos
            else:
                q = q_content
                k = k_content
            q = q.view(bs, nq, self.num_heads, c // self.num_heads)
            query_sine_embed = self.qpos_sine_proj(ref_sine_embed)
            query_sine_embed = query_sine_embed.view(bs, nq, self.num_heads,
                                                     c // self.num_heads)
            q = torch.cat([q, query_sine_embed], dim=3).view(bs, nq, 2 * c)
            k = k.view(bs, hw, self.num_heads, c // self.num_heads)
            k_pos = k_pos.view(bs, hw, self.num_heads, c // self.num_heads)
            k = torch.cat([k, k_pos], dim=3).view(bs, hw, 2 * c)
            ca_output = self.forward_attn(
                query=q,
                key=k,
                value=v,
                attn_mask=attn_mask,
                key_padding_mask=key_padding_mask)[0]
            query = query + self.proj_drop(ca_output)
        else:
            q_content = self.qcontent_proj(query)
            q_pos = self.qpos_proj(query_pos)
            k_content = self.kcontent_proj(query)
            k_pos = self.kpos_proj(query_pos)
            v = self.v_proj(query)
            q = q_content if q_pos is None else q_content + q_pos
            k = k_content if k_pos is None else k_content + k_pos
            sa_output = self.forward_attn(
                query=q,
                key=k,
                value=v,
                attn_mask=attn_mask,
                key_padding_mask=key_padding_mask)[0]
            query = query + self.proj_drop(sa_output)

        return query


class MLP(BaseModule):
    """Very simple multi-layer perceptron (also called FFN) with relu. Mostly
    used in DETR series detectors.

    Args:
        input_dim (int): Feature dim of the input tensor.
        hidden_dim (int): Feature dim of the hidden layer.
        output_dim (int): Feature dim of the output tensor.
        num_layers (int): Number of FFN layers. As the last
            layer of MLP only contains FFN (Linear).
    """

    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int,
                 num_layers: int) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = ModuleList(
            Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x: Tensor) -> Tensor:
        """Forward function of MLP.

        Args:
            x (Tensor): The input feature, has shape
                (num_queries, bs, input_dim).
        Returns:
            Tensor: The output feature, has shape
                (num_queries, bs, output_dim).
        """
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


@MODELS.register_module()
class DynamicConv(BaseModule):
    """Implements Dynamic Convolution.

    This module generate parameters for each sample and
    use bmm to implement 1*1 convolution. Code is modified
    from the `official github repo <https://github.com/PeizeSun/
    SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ .

    Args:
        in_channels (int): The input feature channel.
            Defaults to 256.
        feat_channels (int): The inner feature channel.
            Defaults to 64.
        out_channels (int, optional): The output feature channel.
            When not specified, it will be set to `in_channels`
            by default
        input_feat_shape (int): The shape of input feature.
            Defaults to 7.
        with_proj (bool): Project two-dimentional feature to
            one-dimentional feature. Default to True.
        act_cfg (dict): The activation config for DynamicConv.
        norm_cfg (dict): Config dict for normalization layer. Default
            layer normalization.
        init_cfg (obj:`mmengine.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 in_channels: int = 256,
                 feat_channels: int = 64,
                 out_channels: Optional[int] = None,
                 input_feat_shape: int = 7,
                 with_proj: bool = True,
                 act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
                 norm_cfg: OptConfigType = dict(type='LN'),
                 init_cfg: OptConfigType = None) -> None:
        super(DynamicConv, self).__init__(init_cfg)
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.out_channels_raw = out_channels
        self.input_feat_shape = input_feat_shape
        self.with_proj = with_proj
        self.act_cfg = act_cfg
        self.norm_cfg = norm_cfg
        self.out_channels = out_channels if out_channels else in_channels

        self.num_params_in = self.in_channels * self.feat_channels
        self.num_params_out = self.out_channels * self.feat_channels
        self.dynamic_layer = nn.Linear(
            self.in_channels, self.num_params_in + self.num_params_out)

        self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
        self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1]

        self.activation = build_activation_layer(act_cfg)

        num_output = self.out_channels * input_feat_shape**2
        if self.with_proj:
            self.fc_layer = nn.Linear(num_output, self.out_channels)
            self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]

    def forward(self, param_feature: Tensor, input_feature: Tensor) -> Tensor:
        """Forward function for `DynamicConv`.

        Args:
            param_feature (Tensor): The feature can be used
                to generate the parameter, has shape
                (num_all_proposals, in_channels).
            input_feature (Tensor): Feature that
                interact with parameters, has shape
                (num_all_proposals, in_channels, H, W).

        Returns:
            Tensor: The output feature has shape
            (num_all_proposals, out_channels).
        """
        input_feature = input_feature.flatten(2).permute(2, 0, 1)

        input_feature = input_feature.permute(1, 0, 2)
        parameters = self.dynamic_layer(param_feature)

        param_in = parameters[:, :self.num_params_in].view(
            -1, self.in_channels, self.feat_channels)
        param_out = parameters[:, -self.num_params_out:].view(
            -1, self.feat_channels, self.out_channels)

        # input_feature has shape (num_all_proposals, H*W, in_channels)
        # param_in has shape (num_all_proposals, in_channels, feat_channels)
        # feature has shape (num_all_proposals, H*W, feat_channels)
        features = torch.bmm(input_feature, param_in)
        features = self.norm_in(features)
        features = self.activation(features)

        # param_out has shape (batch_size, feat_channels, out_channels)
        features = torch.bmm(features, param_out)
        features = self.norm_out(features)
        features = self.activation(features)

        if self.with_proj:
            features = features.flatten(1)
            features = self.fc_layer(features)
            features = self.fc_norm(features)
            features = self.activation(features)

        return features