Spaces:
Runtime error
Runtime error
File size: 35,539 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
from typing import Optional, Sequence, Tuple, Union
import torch
import torch.nn.functional as F
from mmcv.cnn import (Linear, build_activation_layer, build_conv_layer,
build_norm_layer)
from mmcv.cnn.bricks.drop import Dropout
from mmengine.model import BaseModule, ModuleList
from mmengine.utils import to_2tuple
from torch import Tensor, nn
from mmdet.registry import MODELS
from mmdet.utils import OptConfigType, OptMultiConfig
def nlc_to_nchw(x: Tensor, hw_shape: Sequence[int]) -> Tensor:
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, L, C] before conversion.
hw_shape (Sequence[int]): The height and width of output feature map.
Returns:
Tensor: The output tensor of shape [N, C, H, W] after conversion.
"""
H, W = hw_shape
assert len(x.shape) == 3
B, L, C = x.shape
assert L == H * W, 'The seq_len does not match H, W'
return x.transpose(1, 2).reshape(B, C, H, W).contiguous()
def nchw_to_nlc(x):
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, C, H, W] before conversion.
Returns:
Tensor: The output tensor of shape [N, L, C] after conversion.
"""
assert len(x.shape) == 4
return x.flatten(2).transpose(1, 2).contiguous()
def coordinate_to_encoding(coord_tensor: Tensor,
num_feats: int = 128,
temperature: int = 10000,
scale: float = 2 * math.pi):
"""Convert coordinate tensor to positional encoding.
Args:
coord_tensor (Tensor): Coordinate tensor to be converted to
positional encoding. With the last dimension as 2 or 4.
num_feats (int, optional): The feature dimension for each position
along x-axis or y-axis. Note the final returned dimension
for each position is 2 times of this value. Defaults to 128.
temperature (int, optional): The temperature used for scaling
the position embedding. Defaults to 10000.
scale (float, optional): A scale factor that scales the position
embedding. The scale will be used only when `normalize` is True.
Defaults to 2*pi.
Returns:
Tensor: Returned encoded positional tensor.
"""
dim_t = torch.arange(
num_feats, dtype=torch.float32, device=coord_tensor.device)
dim_t = temperature**(2 * (dim_t // 2) / num_feats)
x_embed = coord_tensor[..., 0] * scale
y_embed = coord_tensor[..., 1] * scale
pos_x = x_embed[..., None] / dim_t
pos_y = y_embed[..., None] / dim_t
pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()),
dim=-1).flatten(2)
pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()),
dim=-1).flatten(2)
if coord_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=-1)
elif coord_tensor.size(-1) == 4:
w_embed = coord_tensor[..., 2] * scale
pos_w = w_embed[..., None] / dim_t
pos_w = torch.stack((pos_w[..., 0::2].sin(), pos_w[..., 1::2].cos()),
dim=-1).flatten(2)
h_embed = coord_tensor[..., 3] * scale
pos_h = h_embed[..., None] / dim_t
pos_h = torch.stack((pos_h[..., 0::2].sin(), pos_h[..., 1::2].cos()),
dim=-1).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=-1)
else:
raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
coord_tensor.size(-1)))
return pos
def inverse_sigmoid(x: Tensor, eps: float = 1e-5) -> Tensor:
"""Inverse function of sigmoid.
Args:
x (Tensor): The tensor to do the inverse.
eps (float): EPS avoid numerical overflow. Defaults 1e-5.
Returns:
Tensor: The x has passed the inverse function of sigmoid, has the same
shape with input.
"""
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
class AdaptivePadding(nn.Module):
"""Applies padding to input (if needed) so that input can get fully covered
by filter you specified. It support two modes "same" and "corner". The
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around
input. The "corner" mode would pad zero to bottom right.
Args:
kernel_size (int | tuple): Size of the kernel:
stride (int | tuple): Stride of the filter. Default: 1:
dilation (int | tuple): Spacing between kernel elements.
Default: 1
padding (str): Support "same" and "corner", "corner" mode
would pad zero to bottom right, and "same" mode would
pad zero around input. Default: "corner".
Example:
>>> kernel_size = 16
>>> stride = 16
>>> dilation = 1
>>> input = torch.rand(1, 1, 15, 17)
>>> adap_pad = AdaptivePadding(
>>> kernel_size=kernel_size,
>>> stride=stride,
>>> dilation=dilation,
>>> padding="corner")
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
>>> input = torch.rand(1, 1, 16, 17)
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
"""
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'):
super(AdaptivePadding, self).__init__()
assert padding in ('same', 'corner')
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
dilation = to_2tuple(dilation)
self.padding = padding
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
def get_pad_shape(self, input_shape):
input_h, input_w = input_shape
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.stride
output_h = math.ceil(input_h / stride_h)
output_w = math.ceil(input_w / stride_w)
pad_h = max((output_h - 1) * stride_h +
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0)
pad_w = max((output_w - 1) * stride_w +
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0)
return pad_h, pad_w
def forward(self, x):
pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
if pad_h > 0 or pad_w > 0:
if self.padding == 'corner':
x = F.pad(x, [0, pad_w, 0, pad_h])
elif self.padding == 'same':
x = F.pad(x, [
pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
pad_h - pad_h // 2
])
return x
class PatchEmbed(BaseModule):
"""Image to Patch Embedding.
We use a conv layer to implement PatchEmbed.
Args:
in_channels (int): The num of input channels. Default: 3
embed_dims (int): The dimensions of embedding. Default: 768
conv_type (str): The config dict for embedding
conv layer type selection. Default: "Conv2d.
kernel_size (int): The kernel_size of embedding conv. Default: 16.
stride (int): The slide stride of embedding conv.
Default: None (Would be set as `kernel_size`).
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int): The dilation rate of embedding conv. Default: 1.
bias (bool): Bias of embed conv. Default: True.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: None.
input_size (int | tuple | None): The size of input, which will be
used to calculate the out size. Only work when `dynamic_size`
is False. Default: None.
init_cfg (`mmengine.ConfigDict`, optional): The Config for
initialization. Default: None.
"""
def __init__(self,
in_channels: int = 3,
embed_dims: int = 768,
conv_type: str = 'Conv2d',
kernel_size: int = 16,
stride: int = 16,
padding: Union[int, tuple, str] = 'corner',
dilation: int = 1,
bias: bool = True,
norm_cfg: OptConfigType = None,
input_size: Union[int, tuple] = None,
init_cfg: OptConfigType = None) -> None:
super(PatchEmbed, self).__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
if stride is None:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding)
# disable the padding of conv
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.projection = build_conv_layer(
dict(type=conv_type),
in_channels=in_channels,
out_channels=embed_dims,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
else:
self.norm = None
if input_size:
input_size = to_2tuple(input_size)
# `init_out_size` would be used outside to
# calculate the num_patches
# when `use_abs_pos_embed` outside
self.init_input_size = input_size
if self.adap_padding:
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size)
input_h, input_w = input_size
input_h = input_h + pad_h
input_w = input_w + pad_w
input_size = (input_h, input_w)
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
(kernel_size[0] - 1) - 1) // stride[0] + 1
w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
(kernel_size[1] - 1) - 1) // stride[1] + 1
self.init_out_size = (h_out, w_out)
else:
self.init_input_size = None
self.init_out_size = None
def forward(self, x: Tensor) -> Tuple[Tensor, Tuple[int]]:
"""
Args:
x (Tensor): Has shape (B, C, H, W). In most case, C is 3.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, out_h * out_w, embed_dims)
- out_size (tuple[int]): Spatial shape of x, arrange as
(out_h, out_w).
"""
if self.adap_padding:
x = self.adap_padding(x)
x = self.projection(x)
out_size = (x.shape[2], x.shape[3])
x = x.flatten(2).transpose(1, 2)
if self.norm is not None:
x = self.norm(x)
return x, out_size
class PatchMerging(BaseModule):
"""Merge patch feature map.
This layer groups feature map by kernel_size, and applies norm and linear
layers to the grouped feature map. Our implementation uses `nn.Unfold` to
merge patch, which is about 25% faster than original implementation.
Instead, we need to modify pretrained models for compatibility.
Args:
in_channels (int): The num of input channels.
to gets fully covered by filter and stride you specified..
Default: True.
out_channels (int): The num of output channels.
kernel_size (int | tuple, optional): the kernel size in the unfold
layer. Defaults to 2.
stride (int | tuple, optional): the stride of the sliding blocks in the
unfold layer. Default: None. (Would be set as `kernel_size`)
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int | tuple, optional): dilation parameter in the unfold
layer. Default: 1.
bias (bool, optional): Whether to add bias in linear layer or not.
Defaults: False.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: dict(type='LN').
init_cfg (dict, optional): The extra config for initialization.
Default: None.
"""
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Optional[Union[int, tuple]] = 2,
stride: Optional[Union[int, tuple]] = None,
padding: Union[int, tuple, str] = 'corner',
dilation: Optional[Union[int, tuple]] = 1,
bias: Optional[bool] = False,
norm_cfg: OptConfigType = dict(type='LN'),
init_cfg: OptConfigType = None) -> None:
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
if stride:
stride = stride
else:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding)
# disable the padding of unfold
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.sampler = nn.Unfold(
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride)
sample_dim = kernel_size[0] * kernel_size[1] * in_channels
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
else:
self.norm = None
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)
def forward(self, x: Tensor,
input_size: Tuple[int]) -> Tuple[Tensor, Tuple[int]]:
"""
Args:
x (Tensor): Has shape (B, H*W, C_in).
input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
Default: None.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
- out_size (tuple[int]): Spatial shape of x, arrange as
(Merged_H, Merged_W).
"""
B, L, C = x.shape
assert isinstance(input_size, Sequence), f'Expect ' \
f'input_size is ' \
f'`Sequence` ' \
f'but get {input_size}'
H, W = input_size
assert L == H * W, 'input feature has wrong size'
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W
# Use nn.Unfold to merge patch. About 25% faster than original method,
# but need to modify pretrained model for compatibility
if self.adap_padding:
x = self.adap_padding(x)
H, W = x.shape[-2:]
x = self.sampler(x)
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] *
(self.sampler.kernel_size[0] - 1) -
1) // self.sampler.stride[0] + 1
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] *
(self.sampler.kernel_size[1] - 1) -
1) // self.sampler.stride[1] + 1
output_size = (out_h, out_w)
x = x.transpose(1, 2) # B, H/2*W/2, 4*C
x = self.norm(x) if self.norm else x
x = self.reduction(x)
return x, output_size
class ConditionalAttention(BaseModule):
"""A wrapper of conditional attention, dropout and residual connection.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
attn_drop (float): A Dropout layer on attn_output_weights.
Default: 0.0.
proj_drop: A Dropout layer after `nn.MultiheadAttention`.
Default: 0.0.
cross_attn (bool): Whether the attention module is for cross attention.
Default: False
keep_query_pos (bool): Whether to transform query_pos before cross
attention.
Default: False.
batch_first (bool): When it is True, Key, Query and Value are shape of
(batch, n, embed_dim), otherwise (n, batch, embed_dim).
Default: True.
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims: int,
num_heads: int,
attn_drop: float = 0.,
proj_drop: float = 0.,
cross_attn: bool = False,
keep_query_pos: bool = False,
batch_first: bool = True,
init_cfg: OptMultiConfig = None):
super().__init__(init_cfg=init_cfg)
assert batch_first is True, 'Set `batch_first`\
to False is NOT supported in ConditionalAttention. \
First dimension of all DETRs in mmdet is `batch`, \
please set `batch_first` to True.'
self.cross_attn = cross_attn
self.keep_query_pos = keep_query_pos
self.embed_dims = embed_dims
self.num_heads = num_heads
self.attn_drop = Dropout(attn_drop)
self.proj_drop = Dropout(proj_drop)
self._init_layers()
def _init_layers(self):
"""Initialize layers for qkv projection."""
embed_dims = self.embed_dims
self.qcontent_proj = Linear(embed_dims, embed_dims)
self.qpos_proj = Linear(embed_dims, embed_dims)
self.kcontent_proj = Linear(embed_dims, embed_dims)
self.kpos_proj = Linear(embed_dims, embed_dims)
self.v_proj = Linear(embed_dims, embed_dims)
if self.cross_attn:
self.qpos_sine_proj = Linear(embed_dims, embed_dims)
self.out_proj = Linear(embed_dims, embed_dims)
nn.init.constant_(self.out_proj.bias, 0.)
def forward_attn(self,
query: Tensor,
key: Tensor,
value: Tensor,
attn_mask: Tensor = None,
key_padding_mask: Tensor = None) -> Tuple[Tensor]:
"""Forward process for `ConditionalAttention`.
Args:
query (Tensor): The input query with shape [bs, num_queries,
embed_dims].
key (Tensor): The key tensor with shape [bs, num_keys,
embed_dims].
If None, the `query` will be used. Defaults to None.
value (Tensor): The value tensor with same shape as `key`.
Same in `nn.MultiheadAttention.forward`. Defaults to None.
If None, the `key` will be used.
attn_mask (Tensor): ByteTensor mask with shape [num_queries,
num_keys]. Same in `nn.MultiheadAttention.forward`.
Defaults to None.
key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
Defaults to None.
Returns:
Tuple[Tensor]: Attention outputs of shape :math:`(N, L, E)`,
where :math:`N` is the batch size, :math:`L` is the target
sequence length , and :math:`E` is the embedding dimension
`embed_dim`. Attention weights per head of shape :math:`
(num_heads, L, S)`. where :math:`N` is batch size, :math:`L`
is target sequence length, and :math:`S` is the source sequence
length.
"""
assert key.size(1) == value.size(1), \
f'{"key, value must have the same sequence length"}'
assert query.size(0) == key.size(0) == value.size(0), \
f'{"batch size must be equal for query, key, value"}'
assert query.size(2) == key.size(2), \
f'{"q_dims, k_dims must be equal"}'
assert value.size(2) == self.embed_dims, \
f'{"v_dims must be equal to embed_dims"}'
bs, tgt_len, hidden_dims = query.size()
_, src_len, _ = key.size()
head_dims = hidden_dims // self.num_heads
v_head_dims = self.embed_dims // self.num_heads
assert head_dims * self.num_heads == hidden_dims, \
f'{"hidden_dims must be divisible by num_heads"}'
scaling = float(head_dims)**-0.5
q = query * scaling
k = key
v = value
if attn_mask is not None:
assert attn_mask.dtype == torch.float32 or \
attn_mask.dtype == torch.float64 or \
attn_mask.dtype == torch.float16 or \
attn_mask.dtype == torch.uint8 or \
attn_mask.dtype == torch.bool, \
'Only float, byte, and bool types are supported for \
attn_mask'
if attn_mask.dtype == torch.uint8:
warnings.warn('Byte tensor for attn_mask is deprecated.\
Use bool tensor instead.')
attn_mask = attn_mask.to(torch.bool)
if attn_mask.dim() == 2:
attn_mask = attn_mask.unsqueeze(0)
if list(attn_mask.size()) != [1, query.size(1), key.size(1)]:
raise RuntimeError(
'The size of the 2D attn_mask is not correct.')
elif attn_mask.dim() == 3:
if list(attn_mask.size()) != [
bs * self.num_heads,
query.size(1),
key.size(1)
]:
raise RuntimeError(
'The size of the 3D attn_mask is not correct.')
else:
raise RuntimeError(
"attn_mask's dimension {} is not supported".format(
attn_mask.dim()))
# attn_mask's dim is 3 now.
if key_padding_mask is not None and key_padding_mask.dtype == int:
key_padding_mask = key_padding_mask.to(torch.bool)
q = q.contiguous().view(bs, tgt_len, self.num_heads,
head_dims).permute(0, 2, 1, 3).flatten(0, 1)
if k is not None:
k = k.contiguous().view(bs, src_len, self.num_heads,
head_dims).permute(0, 2, 1,
3).flatten(0, 1)
if v is not None:
v = v.contiguous().view(bs, src_len, self.num_heads,
v_head_dims).permute(0, 2, 1,
3).flatten(0, 1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bs
assert key_padding_mask.size(1) == src_len
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [
bs * self.num_heads, tgt_len, src_len
]
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
else:
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(
bs, self.num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(
bs * self.num_heads, tgt_len, src_len)
attn_output_weights = F.softmax(
attn_output_weights -
attn_output_weights.max(dim=-1, keepdim=True)[0],
dim=-1)
attn_output_weights = self.attn_drop(attn_output_weights)
attn_output = torch.bmm(attn_output_weights, v)
assert list(
attn_output.size()) == [bs * self.num_heads, tgt_len, v_head_dims]
attn_output = attn_output.view(bs, self.num_heads, tgt_len,
v_head_dims).permute(0, 2, 1,
3).flatten(2)
attn_output = self.out_proj(attn_output)
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bs, self.num_heads,
tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / self.num_heads
def forward(self,
query: Tensor,
key: Tensor,
query_pos: Tensor = None,
ref_sine_embed: Tensor = None,
key_pos: Tensor = None,
attn_mask: Tensor = None,
key_padding_mask: Tensor = None,
is_first: bool = False) -> Tensor:
"""Forward function for `ConditionalAttention`.
Args:
query (Tensor): The input query with shape [bs, num_queries,
embed_dims].
key (Tensor): The key tensor with shape [bs, num_keys,
embed_dims].
If None, the `query` will be used. Defaults to None.
query_pos (Tensor): The positional encoding for query in self
attention, with the same shape as `x`. If not None, it will
be added to `x` before forward function.
Defaults to None.
query_sine_embed (Tensor): The positional encoding for query in
cross attention, with the same shape as `x`. If not None, it
will be added to `x` before forward function.
Defaults to None.
key_pos (Tensor): The positional encoding for `key`, with the
same shape as `key`. Defaults to None. If not None, it will
be added to `key` before forward function. If None, and
`query_pos` has the same shape as `key`, then `query_pos`
will be used for `key_pos`. Defaults to None.
attn_mask (Tensor): ByteTensor mask with shape [num_queries,
num_keys]. Same in `nn.MultiheadAttention.forward`.
Defaults to None.
key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
Defaults to None.
is_first (bool): A indicator to tell whether the current layer
is the first layer of the decoder.
Defaults to False.
Returns:
Tensor: forwarded results with shape
[bs, num_queries, embed_dims].
"""
if self.cross_attn:
q_content = self.qcontent_proj(query)
k_content = self.kcontent_proj(key)
v = self.v_proj(key)
bs, nq, c = q_content.size()
_, hw, _ = k_content.size()
k_pos = self.kpos_proj(key_pos)
if is_first or self.keep_query_pos:
q_pos = self.qpos_proj(query_pos)
q = q_content + q_pos
k = k_content + k_pos
else:
q = q_content
k = k_content
q = q.view(bs, nq, self.num_heads, c // self.num_heads)
query_sine_embed = self.qpos_sine_proj(ref_sine_embed)
query_sine_embed = query_sine_embed.view(bs, nq, self.num_heads,
c // self.num_heads)
q = torch.cat([q, query_sine_embed], dim=3).view(bs, nq, 2 * c)
k = k.view(bs, hw, self.num_heads, c // self.num_heads)
k_pos = k_pos.view(bs, hw, self.num_heads, c // self.num_heads)
k = torch.cat([k, k_pos], dim=3).view(bs, hw, 2 * c)
ca_output = self.forward_attn(
query=q,
key=k,
value=v,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask)[0]
query = query + self.proj_drop(ca_output)
else:
q_content = self.qcontent_proj(query)
q_pos = self.qpos_proj(query_pos)
k_content = self.kcontent_proj(query)
k_pos = self.kpos_proj(query_pos)
v = self.v_proj(query)
q = q_content if q_pos is None else q_content + q_pos
k = k_content if k_pos is None else k_content + k_pos
sa_output = self.forward_attn(
query=q,
key=k,
value=v,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask)[0]
query = query + self.proj_drop(sa_output)
return query
class MLP(BaseModule):
"""Very simple multi-layer perceptron (also called FFN) with relu. Mostly
used in DETR series detectors.
Args:
input_dim (int): Feature dim of the input tensor.
hidden_dim (int): Feature dim of the hidden layer.
output_dim (int): Feature dim of the output tensor.
num_layers (int): Number of FFN layers. As the last
layer of MLP only contains FFN (Linear).
"""
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int,
num_layers: int) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = ModuleList(
Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x: Tensor) -> Tensor:
"""Forward function of MLP.
Args:
x (Tensor): The input feature, has shape
(num_queries, bs, input_dim).
Returns:
Tensor: The output feature, has shape
(num_queries, bs, output_dim).
"""
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
@MODELS.register_module()
class DynamicConv(BaseModule):
"""Implements Dynamic Convolution.
This module generate parameters for each sample and
use bmm to implement 1*1 convolution. Code is modified
from the `official github repo <https://github.com/PeizeSun/
SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ .
Args:
in_channels (int): The input feature channel.
Defaults to 256.
feat_channels (int): The inner feature channel.
Defaults to 64.
out_channels (int, optional): The output feature channel.
When not specified, it will be set to `in_channels`
by default
input_feat_shape (int): The shape of input feature.
Defaults to 7.
with_proj (bool): Project two-dimentional feature to
one-dimentional feature. Default to True.
act_cfg (dict): The activation config for DynamicConv.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization.
init_cfg (obj:`mmengine.ConfigDict`): The Config for initialization.
Default: None.
"""
def __init__(self,
in_channels: int = 256,
feat_channels: int = 64,
out_channels: Optional[int] = None,
input_feat_shape: int = 7,
with_proj: bool = True,
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
norm_cfg: OptConfigType = dict(type='LN'),
init_cfg: OptConfigType = None) -> None:
super(DynamicConv, self).__init__(init_cfg)
self.in_channels = in_channels
self.feat_channels = feat_channels
self.out_channels_raw = out_channels
self.input_feat_shape = input_feat_shape
self.with_proj = with_proj
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.out_channels = out_channels if out_channels else in_channels
self.num_params_in = self.in_channels * self.feat_channels
self.num_params_out = self.out_channels * self.feat_channels
self.dynamic_layer = nn.Linear(
self.in_channels, self.num_params_in + self.num_params_out)
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1]
self.activation = build_activation_layer(act_cfg)
num_output = self.out_channels * input_feat_shape**2
if self.with_proj:
self.fc_layer = nn.Linear(num_output, self.out_channels)
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]
def forward(self, param_feature: Tensor, input_feature: Tensor) -> Tensor:
"""Forward function for `DynamicConv`.
Args:
param_feature (Tensor): The feature can be used
to generate the parameter, has shape
(num_all_proposals, in_channels).
input_feature (Tensor): Feature that
interact with parameters, has shape
(num_all_proposals, in_channels, H, W).
Returns:
Tensor: The output feature has shape
(num_all_proposals, out_channels).
"""
input_feature = input_feature.flatten(2).permute(2, 0, 1)
input_feature = input_feature.permute(1, 0, 2)
parameters = self.dynamic_layer(param_feature)
param_in = parameters[:, :self.num_params_in].view(
-1, self.in_channels, self.feat_channels)
param_out = parameters[:, -self.num_params_out:].view(
-1, self.feat_channels, self.out_channels)
# input_feature has shape (num_all_proposals, H*W, in_channels)
# param_in has shape (num_all_proposals, in_channels, feat_channels)
# feature has shape (num_all_proposals, H*W, feat_channels)
features = torch.bmm(input_feature, param_in)
features = self.norm_in(features)
features = self.activation(features)
# param_out has shape (batch_size, feat_channels, out_channels)
features = torch.bmm(features, param_out)
features = self.norm_out(features)
features = self.activation(features)
if self.with_proj:
features = features.flatten(1)
features = self.fc_layer(features)
features = self.fc_norm(features)
features = self.activation(features)
return features
|