File size: 6,188 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
from mmengine.structures import InstanceData

from mmdet.registry import TASK_UTILS
from .assign_result import AssignResult
from .max_iou_assigner import MaxIoUAssigner


@TASK_UTILS.register_module()
class MultiInstanceAssigner(MaxIoUAssigner):
    """Assign a corresponding gt bbox or background to each proposal bbox. If
    we need to use a proposal box to generate multiple predict boxes,
    `MultiInstanceAssigner` can assign multiple gt to each proposal box.

    Args:
        num_instance (int): How many bboxes are predicted by each proposal box.
    """

    def __init__(self, num_instance: int = 2, **kwargs):
        super().__init__(**kwargs)
        self.num_instance = num_instance

    def assign(self,
               pred_instances: InstanceData,
               gt_instances: InstanceData,
               gt_instances_ignore: Optional[InstanceData] = None,
               **kwargs) -> AssignResult:
        """Assign gt to bboxes.

        This method assign gt bboxes to every bbox (proposal/anchor), each bbox
        is assigned a set of gts, and the number of gts in this set is defined
        by `self.num_instance`.

        Args:
            pred_instances (:obj:`InstanceData`): Instances of model
                predictions. It includes ``priors``, and the priors can
                be anchors or points, or the bboxes predicted by the
                previous stage, has shape (n, 4). The bboxes predicted by
                the current model or stage will be named ``bboxes``,
                ``labels``, and ``scores``, the same as the ``InstanceData``
                in other places.
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It usually includes ``bboxes``, with shape (k, 4),
                and ``labels``, with shape (k, ).
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes``
                attribute data that is ignored during training and testing.
                Defaults to None.

        Returns:
            :obj:`AssignResult`: The assign result.
        """
        gt_bboxes = gt_instances.bboxes
        priors = pred_instances.priors
        # Set the FG label to 1 and add ignored annotations
        gt_labels = gt_instances.labels + 1
        if gt_instances_ignore is not None:
            gt_bboxes_ignore = gt_instances_ignore.bboxes
            if hasattr(gt_instances_ignore, 'labels'):
                gt_labels_ignore = gt_instances_ignore.labels
            else:
                gt_labels_ignore = torch.ones_like(gt_bboxes_ignore)[:, 0] * -1
        else:
            gt_bboxes_ignore = None
            gt_labels_ignore = None

        assign_on_cpu = True if (self.gpu_assign_thr > 0) and (
            gt_bboxes.shape[0] > self.gpu_assign_thr) else False
        # compute overlap and assign gt on CPU when number of GT is large
        if assign_on_cpu:
            device = priors.device
            priors = priors.cpu()
            gt_bboxes = gt_bboxes.cpu()
            gt_labels = gt_labels.cpu()
            if gt_bboxes_ignore is not None:
                gt_bboxes_ignore = gt_bboxes_ignore.cpu()
                gt_labels_ignore = gt_labels_ignore.cpu()

        if gt_bboxes_ignore is not None:
            all_bboxes = torch.cat([gt_bboxes, gt_bboxes_ignore], dim=0)
            all_labels = torch.cat([gt_labels, gt_labels_ignore], dim=0)
        else:
            all_bboxes = gt_bboxes
            all_labels = gt_labels
        all_priors = torch.cat([priors, all_bboxes], dim=0)

        overlaps_normal = self.iou_calculator(
            all_priors, all_bboxes, mode='iou')
        overlaps_ignore = self.iou_calculator(
            all_priors, all_bboxes, mode='iof')
        gt_ignore_mask = all_labels.eq(-1).repeat(all_priors.shape[0], 1)
        overlaps_normal = overlaps_normal * ~gt_ignore_mask
        overlaps_ignore = overlaps_ignore * gt_ignore_mask

        overlaps_normal, overlaps_normal_indices = overlaps_normal.sort(
            descending=True, dim=1)
        overlaps_ignore, overlaps_ignore_indices = overlaps_ignore.sort(
            descending=True, dim=1)

        # select the roi with the higher score
        max_overlaps_normal = overlaps_normal[:, :self.num_instance].flatten()
        gt_assignment_normal = overlaps_normal_indices[:, :self.
                                                       num_instance].flatten()
        max_overlaps_ignore = overlaps_ignore[:, :self.num_instance].flatten()
        gt_assignment_ignore = overlaps_ignore_indices[:, :self.
                                                       num_instance].flatten()

        # ignore or not
        ignore_assign_mask = (max_overlaps_normal < self.pos_iou_thr) * (
            max_overlaps_ignore > max_overlaps_normal)
        overlaps = (max_overlaps_normal * ~ignore_assign_mask) + (
            max_overlaps_ignore * ignore_assign_mask)
        gt_assignment = (gt_assignment_normal * ~ignore_assign_mask) + (
            gt_assignment_ignore * ignore_assign_mask)

        assigned_labels = all_labels[gt_assignment]
        fg_mask = (overlaps >= self.pos_iou_thr) * (assigned_labels != -1)
        bg_mask = (overlaps < self.neg_iou_thr) * (overlaps >= 0)
        assigned_labels[fg_mask] = 1
        assigned_labels[bg_mask] = 0

        overlaps = overlaps.reshape(-1, self.num_instance)
        gt_assignment = gt_assignment.reshape(-1, self.num_instance)
        assigned_labels = assigned_labels.reshape(-1, self.num_instance)

        assign_result = AssignResult(
            num_gts=all_bboxes.size(0),
            gt_inds=gt_assignment,
            max_overlaps=overlaps,
            labels=assigned_labels)

        if assign_on_cpu:
            assign_result.gt_inds = assign_result.gt_inds.to(device)
            assign_result.max_overlaps = assign_result.max_overlaps.to(device)
            if assign_result.labels is not None:
                assign_result.labels = assign_result.labels.to(device)
        return assign_result