KyanChen's picture
init
f549064
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple
import numpy as np
import torch
from mmcls.registry import BATCH_AUGMENTS
from .mixup import Mixup
@BATCH_AUGMENTS.register_module()
class CutMix(Mixup):
r"""CutMix batch agumentation.
CutMix is a method to improve the network's generalization capability. It's
proposed in `CutMix: Regularization Strategy to Train Strong Classifiers
with Localizable Features <https://arxiv.org/abs/1905.04899>`
With this method, patches are cut and pasted among training images where
the ground truth labels are also mixed proportionally to the area of the
patches.
Args:
alpha (float): Parameters for Beta distribution to generate the
mixing ratio. It should be a positive number. More details
can be found in :class:`Mixup`.
cutmix_minmax (List[float], optional): The min/max area ratio of the
patches. If not None, the bounding-box of patches is uniform
sampled within this ratio range, and the ``alpha`` will be ignored.
Otherwise, the bounding-box is generated according to the
``alpha``. Defaults to None.
correct_lam (bool): Whether to apply lambda correction when cutmix bbox
clipped by image borders. Defaults to True.
.. note ::
If the ``cutmix_minmax`` is None, how to generate the bounding-box of
patches according to the ``alpha``?
First, generate a :math:`\lambda`, details can be found in
:class:`Mixup`. And then, the area ratio of the bounding-box
is calculated by:
.. math::
\text{ratio} = \sqrt{1-\lambda}
"""
def __init__(self,
alpha: float,
cutmix_minmax: Optional[List[float]] = None,
correct_lam: bool = True):
super().__init__(alpha=alpha)
self.cutmix_minmax = cutmix_minmax
self.correct_lam = correct_lam
def rand_bbox_minmax(
self,
img_shape: Tuple[int, int],
count: Optional[int] = None) -> Tuple[int, int, int, int]:
"""Min-Max CutMix bounding-box Inspired by Darknet cutmix
implementation. It generates a random rectangular bbox based on min/max
percent values applied to each dimension of the input image.
Typical defaults for minmax are usually in the .2-.3 for min and
.8-.9 range for max.
Args:
img_shape (tuple): Image shape as tuple
count (int, optional): Number of bbox to generate. Defaults to None
"""
assert len(self.cutmix_minmax) == 2
img_h, img_w = img_shape
cut_h = np.random.randint(
int(img_h * self.cutmix_minmax[0]),
int(img_h * self.cutmix_minmax[1]),
size=count)
cut_w = np.random.randint(
int(img_w * self.cutmix_minmax[0]),
int(img_w * self.cutmix_minmax[1]),
size=count)
yl = np.random.randint(0, img_h - cut_h, size=count)
xl = np.random.randint(0, img_w - cut_w, size=count)
yu = yl + cut_h
xu = xl + cut_w
return yl, yu, xl, xu
def rand_bbox(self,
img_shape: Tuple[int, int],
lam: float,
margin: float = 0.,
count: Optional[int] = None) -> Tuple[int, int, int, int]:
"""Standard CutMix bounding-box that generates a random square bbox
based on lambda value. This implementation includes support for
enforcing a border margin as percent of bbox dimensions.
Args:
img_shape (tuple): Image shape as tuple
lam (float): Cutmix lambda value
margin (float): Percentage of bbox dimension to enforce as margin
(reduce amount of box outside image). Defaults to 0.
count (int, optional): Number of bbox to generate. Defaults to None
"""
ratio = np.sqrt(1 - lam)
img_h, img_w = img_shape
cut_h, cut_w = int(img_h * ratio), int(img_w * ratio)
margin_y, margin_x = int(margin * cut_h), int(margin * cut_w)
cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count)
cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count)
yl = np.clip(cy - cut_h // 2, 0, img_h)
yh = np.clip(cy + cut_h // 2, 0, img_h)
xl = np.clip(cx - cut_w // 2, 0, img_w)
xh = np.clip(cx + cut_w // 2, 0, img_w)
return yl, yh, xl, xh
def cutmix_bbox_and_lam(self,
img_shape: Tuple[int, int],
lam: float,
count: Optional[int] = None) -> tuple:
"""Generate bbox and apply lambda correction.
Args:
img_shape (tuple): Image shape as tuple
lam (float): Cutmix lambda value
count (int, optional): Number of bbox to generate. Defaults to None
"""
if self.cutmix_minmax is not None:
yl, yu, xl, xu = self.rand_bbox_minmax(img_shape, count=count)
else:
yl, yu, xl, xu = self.rand_bbox(img_shape, lam, count=count)
if self.correct_lam or self.cutmix_minmax is not None:
bbox_area = (yu - yl) * (xu - xl)
lam = 1. - bbox_area / float(img_shape[0] * img_shape[1])
return (yl, yu, xl, xu), lam
def mix(self, batch_inputs: torch.Tensor,
batch_scores: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Mix the batch inputs and batch one-hot format ground truth.
Args:
batch_inputs (Tensor): A batch of images tensor in the shape of
``(N, C, H, W)``.
batch_scores (Tensor): A batch of one-hot format labels in the
shape of ``(N, num_classes)``.
Returns:
Tuple[Tensor, Tensor): The mixed inputs and labels.
"""
lam = np.random.beta(self.alpha, self.alpha)
batch_size = batch_inputs.size(0)
img_shape = batch_inputs.shape[-2:]
index = torch.randperm(batch_size)
(y1, y2, x1, x2), lam = self.cutmix_bbox_and_lam(img_shape, lam)
batch_inputs[:, :, y1:y2, x1:x2] = batch_inputs[index, :, y1:y2, x1:x2]
mixed_scores = lam * batch_scores + (1 - lam) * batch_scores[index, :]
return batch_inputs, mixed_scores