# Copyright (c) OpenMMLab. All rights reserved. """copy from https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" import torch from mmengine.structures import InstanceData from mmdet.registry import TASK_UTILS from ..assigners import AssignResult from .base_sampler import BaseSampler from .mask_sampling_result import MaskSamplingResult @TASK_UTILS.register_module() class MaskPseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result: AssignResult, pred_instances: InstanceData, gt_instances: InstanceData, *args, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Mask assigning results. pred_instances (:obj:`InstanceData`): Instances of model predictions. It includes ``scores`` and ``masks`` predicted by the model. gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It usually includes ``labels`` and ``masks`` attributes. Returns: :obj:`SamplingResult`: sampler results """ pred_masks = pred_instances.masks gt_masks = gt_instances.masks pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = pred_masks.new_zeros(pred_masks.shape[0], dtype=torch.uint8) sampling_result = MaskSamplingResult( pos_inds=pos_inds, neg_inds=neg_inds, masks=pred_masks, gt_masks=gt_masks, assign_result=assign_result, gt_flags=gt_flags, avg_factor_with_neg=False) return sampling_result