File size: 25,945 Bytes
3bf37d0
 
 
 
 
 
 
ad96cae
 
3bf37d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import os
import fire
import gradio as gr
from PIL import Image
from functools import partial
import argparse

os.system('pip install --global-option="--no-networks" git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch')

import cv2
import time
import numpy as np
import trimesh
from segment_anything import sam_model_registry, SamPredictor

import random
from pytorch3d import transforms
import torch
import torchvision
import torch.distributed as dist
import nvdiffrast.torch as dr
from video3d.model_ddp import Unsup3DDDP, forward_to_matrix
from video3d.trainer_few_shot import Fewshot_Trainer
from video3d.trainer_ddp import TrainerDDP
from video3d import setup_runtime
from video3d.render.mesh import make_mesh
from video3d.utils.skinning_v4 import estimate_bones, skinning, euler_angles_to_matrix
from video3d.utils.misc import save_obj
from video3d.render import util
import matplotlib.pyplot as plt
from pytorch3d import utils, renderer, transforms, structures, io
from video3d.render.render import render_mesh
from video3d.render.material import texture as material_texture


_TITLE = '''Learning the 3D Fauna of the Web'''
_DESCRIPTION = '''
<div>
Reconstruct any quadruped animal from one image.
</div>
<div>
The demo only contains the 3D reconstruction part.
</div>
'''
_GPU_ID = 0

if not hasattr(Image, 'Resampling'):
    Image.Resampling = Image


def sam_init():
    sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
    model_type = "vit_h"

    sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
    predictor = SamPredictor(sam)
    return predictor


def sam_segment(predictor, input_image, *bbox_coords):
    bbox = np.array(bbox_coords)
    image = np.asarray(input_image)

    start_time = time.time()
    predictor.set_image(image)

    masks_bbox, scores_bbox, logits_bbox = predictor.predict(
        box=bbox,
        multimask_output=True
    )

    print(f"SAM Time: {time.time() - start_time:.3f}s")
    out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
    out_image[:, :, :3] = image
    out_image_bbox = out_image.copy()
    out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
    torch.cuda.empty_cache()
    return Image.fromarray(out_image_bbox, mode='RGB')
    # return Image.fromarray(out_image_bbox, mode='RGBA')


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def preprocess(predictor, input_image, chk_group=None, segment=True):
    RES = 1024
    input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
    if chk_group is not None:
        segment = "Use SAM to center animal" in chk_group
    if segment:
        image_rem = input_image.convert('RGB')
        arr = np.asarray(image_rem)[:,:,-1]
        x_nonzero = np.nonzero(arr.sum(axis=0))
        y_nonzero = np.nonzero(arr.sum(axis=1))
        x_min = int(x_nonzero[0].min())
        y_min = int(y_nonzero[0].min())
        x_max = int(x_nonzero[0].max())
        y_max = int(y_nonzero[0].max())
        input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
    # Rescale and recenter
    # if rescale:
    #     image_arr = np.array(input_image)
    #     in_w, in_h = image_arr.shape[:2]
    #     out_res = min(RES, max(in_w, in_h))
    #     ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
    #     x, y, w, h = cv2.boundingRect(mask)
    #     max_size = max(w, h)
    #     ratio = 0.75
    #     side_len = int(max_size / ratio)
    #     padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
    #     center = side_len//2
    #     padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
    #     rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)

    #     rgba_arr = np.array(rgba) / 255.0
    #     rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
    #     input_image = Image.fromarray((rgb * 255).astype(np.uint8))
    # else:
    #     input_image = expand2square(input_image, (127, 127, 127, 0))
    
    input_image = expand2square(input_image, (0, 0, 0))
    return input_image, input_image.resize((256, 256), Image.Resampling.LANCZOS)


def save_images(images, mask_pred, mode="transparent"):
    img = images[0]
    mask = mask_pred[0]
    img = img.clamp(0, 1)
    if mask is not None:
        mask = mask.clamp(0, 1)
        if mode == "white":
            img = img * mask + 1 * (1 - mask)
        elif mode == "black":
            img = img * mask + 0 * (1 - mask)
        else:
            img = torch.cat([img, mask[0:1]], 0)
    
    img = img.permute(1, 2, 0).cpu().numpy()
    img = Image.fromarray(np.uint8(img * 255))
    return img


def get_bank_embedding(rgb, memory_bank_keys, memory_bank, model, memory_bank_topk=10, memory_bank_dim=128):
    images = rgb
    batch_size, num_frames, _, h0, w0 = images.shape
    images = images.reshape(batch_size*num_frames, *images.shape[2:])  # 0~1
    images_in = images * 2 - 1  # rescale to (-1, 1) for DINO
    
    x = images_in
    with torch.no_grad():
        b, c, h, w = x.shape
        model.netInstance.netEncoder._feats = []
        model.netInstance.netEncoder._register_hooks([11], 'key')
        #self._register_hooks([11], 'token')
        x = model.netInstance.netEncoder.ViT.prepare_tokens(x)
        #x = self.ViT.prepare_tokens_with_masks(x)
        
        for blk in model.netInstance.netEncoder.ViT.blocks:
            x = blk(x)
        out = model.netInstance.netEncoder.ViT.norm(x)
        model.netInstance.netEncoder._unregister_hooks()

        ph, pw = h // model.netInstance.netEncoder.patch_size, w // model.netInstance.netEncoder.patch_size
        patch_out = out[:, 1:]  # first is class token
        patch_out = patch_out.reshape(b, ph, pw, model.netInstance.netEncoder.vit_feat_dim).permute(0, 3, 1, 2)

        patch_key = model.netInstance.netEncoder._feats[0][:,:,1:]  # B, num_heads, num_patches, dim
        patch_key = patch_key.permute(0, 1, 3, 2).reshape(b, model.netInstance.netEncoder.vit_feat_dim, ph, pw)

        global_feat = out[:, 0]
    
    batch_features = global_feat

    batch_size = batch_features.shape[0]
        
    query = torch.nn.functional.normalize(batch_features.unsqueeze(1), dim=-1)      # [B, 1, d_k]
    key = torch.nn.functional.normalize(memory_bank_keys, dim=-1)              # [size, d_k]
    key = key.transpose(1, 0).unsqueeze(0).repeat(batch_size, 1, 1).to(query.device)             # [B, d_k, size]

    cos_dist = torch.bmm(query, key).squeeze(1)         # [B, size], larger the more similar
    rank_idx = torch.sort(cos_dist, dim=-1, descending=True)[1][:, :memory_bank_topk] # [B, k]
    value = memory_bank.unsqueeze(0).repeat(batch_size, 1, 1).to(query.device)                         # [B, size, d_v]

    out = torch.gather(value, dim=1, index=rank_idx[..., None].repeat(1, 1, memory_bank_dim))  # [B, k, d_v]

    weights = torch.gather(cos_dist, dim=-1, index=rank_idx)    # [B, k]
    weights = torch.nn.functional.normalize(weights, p=1.0, dim=-1).unsqueeze(-1).repeat(1, 1, memory_bank_dim)    # [B, k, d_v] weights have been normalized

    out = weights * out
    out = torch.sum(out, dim=1)
    
    batch_mean_out = torch.mean(out, dim=0)

    weight_aux = {
        'weights': weights[:, :, 0], # [B, k], weights from large to small
        'pick_idx': rank_idx, # [B, k]
    }

    batch_embedding = batch_mean_out 
    embeddings = out
    weights = weight_aux

    bank_embedding_model_input = [batch_embedding, embeddings, weights]

    return bank_embedding_model_input


class FixedDirectionLight(torch.nn.Module):
    def __init__(self, direction, amb, diff):
        super(FixedDirectionLight, self).__init__()
        self.light_dir = direction
        self.amb = amb
        self.diff = diff
        self.is_hacking = not (isinstance(self.amb, float)
                               or isinstance(self.amb, int))

    def forward(self, feat):
        batch_size = feat.shape[0]
        if self.is_hacking:
            return torch.concat([self.light_dir, self.amb, self.diff], -1)
        else:
            return torch.concat([self.light_dir, torch.FloatTensor([self.amb, self.diff]).to(self.light_dir.device)], -1).expand(batch_size, -1)

    def shade(self, feat, kd, normal):
        light_params = self.forward(feat)
        light_dir = light_params[..., :3][:, None, None, :]
        int_amb = light_params[..., 3:4][:, None, None, :]
        int_diff = light_params[..., 4:5][:, None, None, :]
        shading = (int_amb + int_diff *
                   torch.clamp(util.dot(light_dir, normal), min=0.0))
        shaded = shading * kd
        return shaded, shading


def render_bones(mvp, bones_pred, size=(256, 256)):
    bone_world4 = torch.concat([bones_pred, torch.ones_like(bones_pred[..., :1]).to(bones_pred.device)], dim=-1)
    b, f, num_bones = bone_world4.shape[:3]
    bones_clip4 = (bone_world4.view(b, f, num_bones*2, 1, 4) @ mvp.transpose(-1, -2).reshape(b, f, 1, 4, 4)).view(b, f, num_bones, 2, 4)
    bones_uv = bones_clip4[..., :2] / bones_clip4[..., 3:4]  # b, f, num_bones, 2, 2
    dpi = 32
    fx, fy = size[1] // dpi, size[0] // dpi

    rendered = []
    for b_idx in range(b):
        for f_idx in range(f):
            frame_bones_uv = bones_uv[b_idx, f_idx].cpu().numpy()
            fig = plt.figure(figsize=(fx, fy), dpi=dpi, frameon=False)
            ax = plt.Axes(fig, [0., 0., 1., 1.])
            ax.set_axis_off()
            for bone in frame_bones_uv:
                ax.plot(bone[:, 0], bone[:, 1], marker='o', linewidth=8, markersize=20)
            ax.set_xlim(-1, 1)
            ax.set_ylim(-1, 1)
            ax.invert_yaxis()
            # Convert to image
            fig.add_axes(ax)
            fig.canvas.draw_idle()
            image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
            w, h = fig.canvas.get_width_height()
            image.resize(h, w, 3)
            rendered += [image / 255.]
    return torch.from_numpy(np.stack(rendered, 0).transpose(0, 3, 1, 2)).to(bones_pred.device)

def add_mesh_color(mesh, color):
    verts = mesh.verts_padded()
    color = torch.FloatTensor(color).to(verts.device).view(1,1,3) / 255
    mesh.textures = renderer.TexturesVertex(verts_features=verts*0+color)
    return mesh

def create_sphere(position, scale, device, color=[139, 149, 173]):
    mesh = utils.ico_sphere(2).to(device)
    mesh = mesh.extend(position.shape[0])

    # scale and offset
    mesh = mesh.update_padded(mesh.verts_padded() * scale + position[:, None])

    mesh = add_mesh_color(mesh, color)

    return mesh

def estimate_bone_rotation(b):
    """
    (0, 0, 1) = matmul(R^(-1), b)

    assumes x, y is a symmetry plane

    returns R
    """
    b = b / torch.norm(b, dim=-1, keepdim=True)

    n = torch.FloatTensor([[1, 0, 0]]).to(b.device)
    n = n.expand_as(b)
    v = torch.cross(b, n, dim=-1)

    R = torch.stack([n, v, b], dim=-1).transpose(-2, -1)

    return R

def estimate_vector_rotation(vector_a, vector_b):
    """
    vector_a = matmul(R, vector_b)

    returns R

    https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d
    """
    vector_a = vector_a / torch.norm(vector_a, dim=-1, keepdim=True)
    vector_b = vector_b / torch.norm(vector_b, dim=-1, keepdim=True)

    v = torch.cross(vector_a, vector_b, dim=-1)
    c = torch.sum(vector_a * vector_b, dim=-1)

    skew = torch.stack([
        torch.stack([torch.zeros_like(v[..., 0]), -v[..., 2], v[..., 1]], dim=-1),
        torch.stack([v[..., 2], torch.zeros_like(v[..., 0]), -v[..., 0]], dim=-1),
        torch.stack([-v[..., 1], v[..., 0], torch.zeros_like(v[..., 0])], dim=-1)],
        dim=-1)

    R = torch.eye(3, device=vector_a.device)[None] + skew + torch.matmul(skew, skew) / (1  + c[..., None, None])

    return R

def create_elipsoid(bone, scale=0.05, color=[139, 149, 173], generic_rotation_estim=True):
    length = torch.norm(bone[:, 0] - bone[:, 1], dim=-1)

    mesh = utils.ico_sphere(2).to(bone.device)
    mesh = mesh.extend(bone.shape[0])
    # scale x, y
    verts = mesh.verts_padded() * torch.FloatTensor([scale, scale, 1]).to(bone.device)
    # stretch along z axis, set the start to origin
    verts[:, :, 2] = verts[:, :, 2] * length[:, None] * 0.5 + length[:, None] * 0.5

    bone_vector = bone[:, 1] - bone[:, 0]
    z_vector = torch.FloatTensor([[0, 0, 1]]).to(bone.device)
    z_vector = z_vector.expand_as(bone_vector)
    if generic_rotation_estim:
        rot = estimate_vector_rotation(z_vector, bone_vector)
    else:
        rot = estimate_bone_rotation(bone_vector)
    tsf = transforms.Rotate(rot, device=bone.device)
    tsf = tsf.compose(transforms.Translate(bone[:, 0], device=bone.device))
    verts = tsf.transform_points(verts)

    mesh = mesh.update_padded(verts)

    mesh = add_mesh_color(mesh, color)

    return mesh

def convert_textures_vertex_to_textures_uv(meshes: structures.Meshes, color1, color2) -> renderer.TexturesUV:
    """
    Convert a TexturesVertex object to a TexturesUV object.
    """
    color1 = torch.Tensor(color1).to(meshes.device).view(1, 1, 3) / 255
    color2 = torch.Tensor(color2).to(meshes.device).view(1, 1, 3) / 255
    textures_vertex = meshes.textures
    assert isinstance(textures_vertex, renderer.TexturesVertex), "Input meshes must have TexturesVertex"
    verts_rgb = textures_vertex.verts_features_padded()
    faces_uvs = meshes.faces_padded()
    batch_size = verts_rgb.shape[0]
    maps = torch.zeros(batch_size, 128, 128, 3, device=verts_rgb.device)
    maps[:, :, :64, :] = color1
    maps[:, :, 64:, :] = color2
    is_first = (verts_rgb == color1)[..., 0]
    verts_uvs = torch.zeros(batch_size, verts_rgb.shape[1], 2, device=verts_rgb.device)
    verts_uvs[is_first] = torch.FloatTensor([0.25, 0.5]).to(verts_rgb.device)
    verts_uvs[~is_first] = torch.FloatTensor([0.75, 0.5]).to(verts_rgb.device)
    textures_uv = renderer.TexturesUV(maps=maps, faces_uvs=faces_uvs, verts_uvs=verts_uvs)
    meshes.textures = textures_uv
    return meshes
    
def create_bones_scene(bones, joint_color=[66, 91, 140], bone_color=[119, 144, 189], show_end_point=False):
    meshes = []
    for bone_i in range(bones.shape[1]):
        # points
        meshes += [create_sphere(bones[:, bone_i, 0], 0.1, bones.device, color=joint_color)]
        if show_end_point:
            meshes += [create_sphere(bones[:, bone_i, 1], 0.1, bones.device, color=joint_color)]

        # connecting ellipsoid
        meshes += [create_elipsoid(bones[:, bone_i], color=bone_color)]

    current_batch_size = bones.shape[0]
    meshes = [structures.join_meshes_as_scene([m[i] for m in meshes]) for i in range(current_batch_size)]
    mesh = structures.join_meshes_as_batch(meshes)

    return mesh


def run_pipeline(model_items, cfgs, input_img, device):
    epoch = 999
    total_iter = 999999
    model = model_items[0]
    memory_bank = model_items[1]
    memory_bank_keys = model_items[2]

    input_image = torch.stack([torchvision.transforms.ToTensor()(input_img)], dim=0).to(device)

    with torch.no_grad():
        model.netPrior.eval()
        model.netInstance.eval()
        input_image = torch.nn.functional.interpolate(input_image, size=(256, 256), mode='bilinear', align_corners=False)
        input_image = input_image[:, None, :, :]  # [B=1, F=1, 3, 256, 256]

        bank_embedding = get_bank_embedding(
            input_image, 
            memory_bank_keys, 
            memory_bank, 
            model, 
            memory_bank_topk=cfgs.get("memory_bank_topk", 10),
            memory_bank_dim=128
        )

        prior_shape, dino_pred, classes_vectors = model.netPrior(
            category_name='tmp',
            perturb_sdf=False, 
            total_iter=total_iter,
            is_training=False, 
            class_embedding=bank_embedding
        )
        Instance_out = model.netInstance(
            'tmp', 
            input_image, 
            prior_shape, 
            epoch, 
            dino_features=None, 
            dino_clusters=None, 
            total_iter=total_iter, 
            is_training=False
        )  # frame dim collapsed N=(B*F)
        if len(Instance_out) == 13:
            shape, pose_raw, pose, mvp, w2c, campos, texture_pred, im_features, dino_feat_im_calc, deform, all_arti_params, light, forward_aux = Instance_out
            im_features_map = None
        else:
            shape, pose_raw, pose, mvp, w2c, campos, texture_pred, im_features, dino_feat_im_calc, deform, all_arti_params, light, forward_aux, im_features_map = Instance_out

        class_vector = classes_vectors  # the bank embeddings

        gray_light = FixedDirectionLight(direction=torch.FloatTensor([0, 0, 1]).to(device), amb=0.2, diff=0.7)

        image_pred, mask_pred, _, _, _, shading = model.render(
            shape, texture_pred, mvp, w2c, campos, 256, background=model.background_mode, 
            im_features=im_features, light=gray_light, prior_shape=prior_shape, render_mode='diffuse', 
            render_flow=False, dino_pred=None, im_features_map=im_features_map
        )
        mask_pred = mask_pred.expand_as(image_pred)
        shading = shading.expand_as(image_pred)
        # render bones in pytorch3D style
        posed_bones = forward_aux["posed_bones"].squeeze(1)
        jc, bc = [66, 91, 140], [119, 144, 189]
        bones_meshes = create_bones_scene(posed_bones, joint_color=jc, bone_color=bc, show_end_point=True)
        bones_meshes = convert_textures_vertex_to_textures_uv(bones_meshes, color1=jc, color2=bc)
        nv_meshes = make_mesh(verts=bones_meshes.verts_padded(), faces=bones_meshes.faces_padded()[0:1],
                                uvs=bones_meshes.textures.verts_uvs_padded(), uv_idx=bones_meshes.textures.faces_uvs_padded()[0:1],
                                material=material_texture.Texture2D(bones_meshes.textures.maps_padded()))
        buffers = render_mesh(dr.RasterizeGLContext(), nv_meshes, mvp, w2c, campos, nv_meshes.material, lgt=gray_light, feat=im_features, dino_pred=None, resolution=256, bsdf="diffuse")
        
        shaded = buffers["shaded"].permute(0, 3, 1, 2)
        bone_image = shaded[:, :3, :, :]
        bone_mask = shaded[:, 3:, :, :]
        mask_final = mask_pred.logical_or(bone_mask)
        mask_final = mask_final.int()
        image_with_bones = bone_image * bone_mask * 0.5 + (shading * (1 - bone_mask * 0.5) + 0.5 * (mask_final.float() - mask_pred.float()))

        mesh_image = save_images(shading, mask_pred)
        mesh_bones_image = save_images(image_with_bones, mask_final)

        final_shape = shape.clone()
        prior_shape = prior_shape.clone()

        final_mesh_tri = trimesh.Trimesh(
            vertices=final_shape.v_pos[0].detach().cpu().numpy(), 
            faces=final_shape.t_pos_idx[0].detach().cpu().numpy(), 
            process=False,  
            maintain_order=True)
        prior_mesh_tri = trimesh.Trimesh(
            vertices=prior_shape.v_pos[0].detach().cpu().numpy(), 
            faces=prior_shape.t_pos_idx[0].detach().cpu().numpy(), 
            process=False,  
            maintain_order=True)



def run_demo():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', default='0', type=str,
                        help='Specify a GPU device')
    parser.add_argument('--num_workers', default=4, type=int,
                        help='Specify the number of worker threads for data loaders')
    parser.add_argument('--seed', default=0, type=int,
                        help='Specify a random seed')
    parser.add_argument('--config', default='./ckpts/configs.yml',
                        type=str)  # Model config path
    parser.add_argument('--checkpoint_path', default='./ckpts/iter0800000.pth', type=str)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '8088'
    dist.init_process_group("gloo", rank=_GPU_ID, world_size=1)
    torch.cuda.set_device(_GPU_ID)
    args.rank = _GPU_ID
    args.world_size = 1
    args.gpu = os.environ['CUDA_VISIBLE_DEVICES']
    device = f'cuda:{_GPU_ID}'

    resolution = (256, 256)
    batch_size = 1
    model_cfgs = setup_runtime(args)
    bone_y_thresh = 0.4
    body_bone_idx_preset = [3, 6, 6, 3]
    model_cfgs['body_bone_idx_preset'] = body_bone_idx_preset

    model = Unsup3DDDP(model_cfgs)
    # a hack attempt
    model.netPrior.classes_vectors = torch.nn.Parameter(torch.nn.init.uniform_(torch.empty(123, 128), a=-0.05, b=0.05))
    cp = torch.load(args.checkpoint_path, map_location=device)
    model.load_model_state(cp)
    memory_bank_keys = cp['memory_bank_keys']
    memory_bank = cp['memory_bank']

    model.to(device)
    memory_bank.to(device)
    memory_bank_keys.to(device)
    model_items = [
        model,
        memory_bank,
        memory_bank_keys
    ]

    predictor = sam_init()

    custom_theme = gr.themes.Soft(primary_hue="blue").set(
                    button_secondary_background_fill="*neutral_100",
                    button_secondary_background_fill_hover="*neutral_200")
    custom_css = '''#disp_image {
        text-align: center; /* Horizontally center the content */
    }'''

    with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)
        with gr.Row(variant='panel'):
            with gr.Column(scale=1):
                input_image = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None)

                example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
                example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
                gr.Examples(
                    examples=example_fns,
                    inputs=[input_image],
                    # outputs=[input_image],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=30
                )
            with gr.Column(scale=1):
                processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=256, tool=None, image_mode='RGB', elem_id="disp_image")
                processed_image_highres = gr.Image(type='pil', image_mode='RGB', visible=False, tool=None)

                with gr.Accordion('Advanced options', open=True):
                    with gr.Row():
                        with gr.Column():
                            input_processing = gr.CheckboxGroup(['Use SAM to center animal'], 
                                                                label='Input Image Preprocessing',
                                                                 value=['Use SAM to center animal'],
                                                                 info='untick this, if animal is already centered, e.g. in example images')
                        # with gr.Column():
                        #     output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[]) 
                    # with gr.Row():
                    #     with gr.Column():
                    #         scale_slider = gr.Slider(1, 5, value=3, step=1,
                    #                                     label='Classifier Free Guidance Scale')
                    #     with gr.Column():
                    #         steps_slider = gr.Slider(15, 100, value=50, step=1,
                    #                                     label='Number of Diffusion Inference Steps')
                    # with gr.Row():
                    #     with gr.Column():
                    #         seed = gr.Number(42, label='Seed')
                    #     with gr.Column():
                    #         crop_size = gr.Number(192, label='Crop size')
                    # crop_size = 192
                run_btn = gr.Button('Generate', variant='primary', interactive=True)
        with gr.Row():
            view_1 = gr.Image(interactive=False, height=256, show_label=False)
            view_2 = gr.Image(interactive=False, height=256, show_label=False)
        with gr.Row():
            shape_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0],  label="Reconstructed Model")
            shape_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0],  label="Bank Base Shape Model")

        with gr.Row():
            view_gallery = gr.Gallery(interactive=False, show_label=False, container=True, preview=True,  allow_preview=False, height=1200)
            normal_gallery = gr.Gallery(interactive=False, show_label=False, container=True, preview=True, allow_preview=False, height=1200)
        

        run_btn.click(fn=partial(preprocess, predictor), 
                        inputs=[input_image, input_processing], 
                        outputs=[processed_image_highres, processed_image], queue=True
            ).success(fn=partial(run_pipeline, model_items, model_cfgs), 
                        inputs=[processed_image, device],
                        outputs=[view_1, view_2, shape_1, shape_2]
                        )
        demo.queue().launch(share=True, max_threads=80)


if __name__ == '__main__':
    fire.Fire(run_demo)