Spaces:
Running
on
T4
Running
on
T4
File size: 28,498 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import os
import os.path as osp
import glob
from datetime import datetime
import random
import torch
import video3d.utils.meters as meters
import video3d.utils.misc as misc
from video3d.dataloaders_ddp import get_sequence_loader_quadrupeds
def sample_frames(batch, num_sample_frames, iteration, stride=1):
## window slicing sampling
images, masks, flows, bboxs, bg_image, seq_idx, frame_idx = batch
num_seqs, total_num_frames = images.shape[:2]
# start_frame_idx = iteration % (total_num_frames - num_sample_frames +1)
## forward and backward
num_windows = total_num_frames - num_sample_frames +1
start_frame_idx = (iteration * stride) % (2*num_windows)
## x' = (2n-1)/2 - |(2n-1)/2 - x| : 0,1,2,3,4,5 -> 0,1,2,2,1,0
mid_val = (2*num_windows -1) /2
start_frame_idx = int(mid_val - abs(mid_val -start_frame_idx))
new_batch = images[:, start_frame_idx:start_frame_idx+num_sample_frames], \
masks[:, start_frame_idx:start_frame_idx+num_sample_frames], \
flows[:, start_frame_idx:start_frame_idx+num_sample_frames-1], \
bboxs[:, start_frame_idx:start_frame_idx+num_sample_frames], \
bg_image, \
seq_idx, \
frame_idx[:, start_frame_idx:start_frame_idx+num_sample_frames]
return new_batch
def indefinite_generator(loader):
while True:
for x in loader:
yield x
def indefinite_generator_from_list(loaders):
while True:
random_idx = random.randint(0, len(loaders)-1)
for x in loaders[random_idx]:
yield x
break
def definite_generator(loader):
for x in loader:
yield x
while True:
yield None
class TrainerDDP:
def __init__(self, cfgs, model):
self.cfgs = cfgs
self.is_dry_run = cfgs.get('is_dry_run', False)
self.rank = cfgs.get('rank', 0)
self.world_size = cfgs.get('world_size', 1)
self.use_ddp = cfgs.get('use_ddp', True)
self.device = cfgs.get('device', 'cpu')
self.num_epochs = cfgs.get('num_epochs', 1)
# The logic is, if the num_iterations is set in the cfg
# for any 'epoch' in cfg, I rescale it to (epoch / 120) * epoch_now, as in horse exp
# for any 'iter' in cfg, I just keep them the same
self.num_iterations = cfgs.get('num_iterations', 0)
if self.num_iterations != 0:
self.use_total_iterations = True
else:
self.use_total_iterations = False
self.num_sample_frames = cfgs.get('num_sample_frames', 100)
self.sample_frame_stride = cfgs.get('sample_frame_stride', 1)
self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
self.save_checkpoint_freq = cfgs.get('save_checkpoint_freq', 1)
self.keep_num_checkpoint = cfgs.get('keep_num_checkpoint', 2) # -1 for keeping all checkpoints
self.resume = cfgs.get('resume', True)
self.reset_epoch = cfgs.get('reset_epoch', False)
self.finetune_ckpt = cfgs.get('finetune_ckpt', None)
# print('!!!!!!!!!!!!!!!!!!!!!!!!!!')
print(f'reset epoch: {self.reset_epoch}')
# print('!!!!!!!!!!!!!!!!!!!!!!!!!!')
self.use_logger = cfgs.get('use_logger', True)
self.log_freq_images = cfgs.get('log_freq_images', 1000)
self.log_train_images = cfgs.get('log_train_images', False)
self.log_freq_losses = cfgs.get('log_freq_losses', 100)
self.visualize_validation = cfgs.get('visualize_validation', False)
self.fix_viz_batch = cfgs.get('fix_viz_batch', False)
self.archive_code = cfgs.get('archive_code', True)
self.checkpoint_name = cfgs.get('checkpoint_name', None)
self.test_result_dir = cfgs.get('test_result_dir', None)
self.validate = cfgs.get('validate', False)
self.current_epoch = 0
self.logger = None
self.viz_input = None
self.dataset = cfgs.get('dataset', 'video')
self.train_with_cub = cfgs.get('train_with_cub', False)
self.train_with_kaggle = cfgs.get('train_with_kaggle', False)
self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
self.metrics_trace = meters.MetricsTrace()
self.make_metrics = lambda m=None: meters.StandardMetrics(m)
self.batch_size = cfgs.get('batch_size', 64)
self.in_image_size = cfgs.get('in_image_size', 256)
self.out_image_size = cfgs.get('out_image_size', 256)
self.num_workers = cfgs.get('num_workers', 4)
self.run_train = cfgs.get('run_train', False)
self.train_data_dir = cfgs.get('train_data_dir', None)
self.val_data_dir = cfgs.get('val_data_dir', None)
self.run_test = cfgs.get('run_test', False)
self.test_data_dir = cfgs.get('test_data_dir', None)
self.flow_bool = cfgs.get('flow_bool', 0)
if len(self.train_data_dir) <= 10 and len(self.val_data_dir) <= 10:
self.train_loader, self.val_loader, self.test_loader = model.get_data_loaders_ddp(cfgs, self.dataset, self.rank, self.world_size, in_image_size=self.in_image_size, out_image_size=self.out_image_size, batch_size=self.batch_size, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.train_data_dir, val_data_dir=self.val_data_dir, test_data_dir=self.test_data_dir, flow_bool=self.flow_bool)
else:
# for 128 categories specific training
self.train_loader, self.val_loader, self.test_loader = self.get_efficient_data_loaders_ddp(
cfgs,
self.batch_size,
self.num_workers,
self.in_image_size,
self.out_image_size
)
print(self.train_loader, self.val_loader, self.test_loader)
if self.train_with_cub:
self.batch_size_cub = cfgs.get('batch_size_cub', 64)
self.data_dir_cub = cfgs.get('data_dir_cub', None)
self.train_loader_cub, self.val_loader_cub, self.test_loader_cub = model.get_data_loaders_ddp(cfgs, 'cub', self.rank, self.world_size, in_image_size=self.in_image_size, batch_size=self.batch_size_cub, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_cub, val_data_dir=self.data_dir_cub, test_data_dir=self.data_dir_cub)
if self.train_with_kaggle:
self.batch_size_kaggle = cfgs.get('batch_size_kaggle', 64)
self.data_dir_kaggle = cfgs.get('data_dir_kaggle', None)
self.train_loader_kaggle, self.val_loader_kaggle, self.test_loader_kaggle = model.get_data_loaders_ddp(cfgs, 'kaggle', self.rank, self.world_size, in_image_size=self.in_image_size, batch_size=self.batch_size_kaggle, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_kaggle, val_data_dir=self.data_dir_kaggle, test_data_dir=self.data_dir_kaggle)
if self.use_total_iterations:
# reset the epoch related cfgs
dataloader_length = max([len(loader) for loader in self.train_loader]) * len(self.train_loader)
print("Total length of data loader is: ", dataloader_length)
total_epoch = int(self.num_iterations / dataloader_length) + 1
print(f'run for {total_epoch} epochs')
print('is_main_process()?', misc.is_main_process())
for k, v in cfgs.items():
if 'epoch' in k:
if isinstance(v, list):
new_v = [int(total_epoch * x / 120) + 1 for x in v]
cfgs[k] = new_v
elif isinstance(v, int):
new_v = int(total_epoch * v / 120) + 1
cfgs[k] = new_v
else:
continue
self.num_epochs = total_epoch
self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
self.cfgs = cfgs
self.model = model(cfgs)
self.model.trainer = self
self.save_result_freq = cfgs.get('save_result_freq', None)
self.train_result_dir = osp.join(self.checkpoint_dir, 'results')
self.use_wandb = cfgs.get('use_wandb', False)
def get_efficient_data_loaders_ddp(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
train_loader = val_loader = test_loader = None
color_jitter_train = cfgs.get('color_jitter_train', None)
color_jitter_val = cfgs.get('color_jitter_val', None)
random_flip_train = cfgs.get('random_flip_train', False)
data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
skip_beginning = cfgs.get('skip_beginning', 4)
skip_end = cfgs.get('skip_end', 4)
num_sample_frames = cfgs.get('num_sample_frames', 2)
min_seq_len = cfgs.get('min_seq_len', 10)
max_seq_len = cfgs.get('max_seq_len', 10)
debug_seq = cfgs.get('debug_seq', False)
random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
load_background = cfgs.get('background_mode', 'none') == 'background'
rgb_suffix = cfgs.get('rgb_suffix', '.png')
load_dino_feature = cfgs.get('load_dino_feature', False)
load_dino_cluster = cfgs.get('load_dino_cluster', False)
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
enhance_back_view = cfgs.get('enhance_back_view', False)
enhance_back_view_path = cfgs.get('enhance_back_view_path', None)
override_categories = None
get_loader_ddp = lambda **kwargs: get_sequence_loader_quadrupeds(
mode=data_loader_mode,
num_workers=num_workers,
in_image_size=in_image_size,
out_image_size=out_image_size,
debug_seq=debug_seq,
skip_beginning=skip_beginning,
skip_end=skip_end,
num_sample_frames=num_sample_frames,
min_seq_len=min_seq_len,
max_seq_len=max_seq_len,
load_background=load_background,
rgb_suffix=rgb_suffix,
load_dino_feature=load_dino_feature,
load_dino_cluster=load_dino_cluster,
dino_feature_dim=dino_feature_dim,
flow_bool=0,
enhance_back_view=enhance_back_view,
enhance_back_view_path=enhance_back_view_path,
override_categories=override_categories,
**kwargs)
# just the train now
print(f"Loading training data...")
val_image_num = cfgs.get('few_shot_val_image_num', 5)
# the train_data_dir is a dict and will go into the original dataset type
#TODO: very hack here, directly assign first 7 as original categories
o_class = ["horse", "elephant", "zebra", "cow", "giraffe", "sheep", "bear"]
self.original_categories_paths = {}
self.few_shot_categories_paths = {}
self.original_val_data_path = {}
for k,v in self.train_data_dir.items():
if k in o_class:
self.original_categories_paths.update({k: v})
self.original_val_data_path.update({k: self.val_data_dir[k]})
else:
self.few_shot_categories_paths.update({k:v})
self.new_classes_num = len(self.few_shot_categories_paths)
self.original_classes_num = len(self.original_categories_paths)
train_loader = get_loader_ddp(
original_data_dirs=self.original_categories_paths,
few_shot_data_dirs=self.few_shot_categories_paths,
original_num=self.original_classes_num,
few_shot_num=self.new_classes_num,
rank=self.rank,
world_size=self.world_size,
batch_size=batch_size,
is_validation=False,
val_image_num=val_image_num,
shuffle=shuffle_train_seqs,
dense_sample=True,
color_jitter=color_jitter_train,
random_flip=random_flip_train
)
val_loader = get_loader_ddp(
original_data_dirs=self.original_val_data_path,
few_shot_data_dirs=self.few_shot_categories_paths,
original_num=self.original_classes_num,
few_shot_num=self.new_classes_num,
rank=self.rank,
world_size=self.world_size,
batch_size=1,
is_validation=True,
val_image_num=val_image_num,
shuffle=False,
dense_sample=True,
color_jitter=color_jitter_val,
random_flip=False
)
test_loader = None
return train_loader, val_loader, test_loader
def load_checkpoint(self, optim=True, ckpt_path=None):
"""Search the specified/latest checkpoint in checkpoint_dir and load the model and optimizer."""
if ckpt_path is not None:
checkpoint_path = ckpt_path
self.checkpoint_name = osp.basename(checkpoint_path)
elif self.checkpoint_name is not None:
checkpoint_path = osp.join(self.checkpoint_dir, self.checkpoint_name)
else:
checkpoints = sorted(glob.glob(osp.join(self.checkpoint_dir, '*.pth')))
if len(checkpoints) == 0:
return 0, 0
checkpoint_path = checkpoints[-1]
self.checkpoint_name = osp.basename(checkpoint_path)
print(f"Loading checkpoint from {checkpoint_path}")
cp = torch.load(checkpoint_path, map_location=self.device)
# print(cp)
self.model.load_model_state(cp)
if optim:
self.model.load_optimizer_state(cp)
self.metrics_trace = cp['metrics_trace']
epoch = cp['epoch']
total_iter = cp['total_iter']
if 'classes_vectors' in cp:
self.model.classes_vectors = cp['classes_vectors']
return epoch, total_iter
def save_checkpoint(self, epoch, total_iter=0, optim=True):
"""Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
misc.xmkdir(self.checkpoint_dir)
checkpoint_path = osp.join(self.checkpoint_dir, f'checkpoint{epoch:03}.pth')
state_dict = self.model.get_model_state()
if optim:
optimizer_state = self.model.get_optimizer_state()
state_dict = {**state_dict, **optimizer_state}
state_dict['metrics_trace'] = self.metrics_trace
state_dict['epoch'] = epoch
state_dict['total_iter'] = total_iter
print(f"Saving checkpoint to {checkpoint_path}")
torch.save(state_dict, checkpoint_path)
if self.keep_num_checkpoint > 0:
misc.clean_checkpoint(self.checkpoint_dir, keep_num=self.keep_num_checkpoint)
def save_last_checkpoint(self, epoch, total_iter=0, optim=True):
"""Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
misc.xmkdir(self.checkpoint_dir)
checkpoint_path = osp.join(self.checkpoint_dir, 'last.pth')
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
state_dict = self.model.get_model_state()
if optim:
optimizer_state = self.model.get_optimizer_state()
state_dict = {**state_dict, **optimizer_state}
state_dict['metrics_trace'] = self.metrics_trace
state_dict['epoch'] = epoch
state_dict['total_iter'] = total_iter
print(f"Saving checkpoint to {checkpoint_path}")
torch.save(state_dict, checkpoint_path)
def save_clean_checkpoint(self, path):
"""Save model state only to specified path."""
torch.save(self.model.get_model_state(), path)
def test(self):
"""Perform testing."""
self.model.to(self.device)
epoch, self.total_iter = self.load_checkpoint(optim=False)
if self.use_ddp:
self.model.ddp(self.rank, self.world_size)
self.model.set_eval()
if self.test_result_dir is None:
self.test_result_dir = osp.join(self.checkpoint_dir, f'test_results_{self.checkpoint_name}'.replace('.pth', ''))
print(f"Saving testing results to {self.test_result_dir}")
with torch.no_grad():
for iteration, batch in enumerate(self.test_loader):
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.test_result_dir, which_data=self.dataset, is_training=False)
print(f"T{epoch:04}/{iteration:05}")
score_path = osp.join(self.test_result_dir, 'all_metrics.txt')
# self.model.save_scores(score_path)
def train(self):
"""Perform training."""
# archive code and configs
if self.archive_code:
misc.archive_code(osp.join(self.checkpoint_dir, 'archived_code.zip'), filetypes=['.py'])
misc.dump_yaml(osp.join(self.checkpoint_dir, 'configs.yml'), self.cfgs)
# initialize
start_epoch = 0
self.total_iter = 0
self.metrics_trace.reset()
self.model.to(self.device)
self.model.reset_optimizers()
# resume from checkpoint
# from IPython import embed; embed()
if self.resume:
start_epoch, self.total_iter = self.load_checkpoint(optim=True)
if self.reset_epoch:
start_epoch = 0
self.total_iter = 0
if start_epoch == 0 and self.total_iter ==0 and self.finetune_ckpt is not None:
_, _ = self.load_checkpoint(optim=True, ckpt_path=self.finetune_ckpt)
# distribute model
if self.use_ddp:
self.model.ddp(self.rank, self.world_size)
# train with cub
if self.train_with_cub:
self.cub_train_data_iterator = indefinite_generator(self.train_loader_cub)
# initialize tensorboard logger
if misc.is_main_process() and self.use_logger:
if self.use_wandb:
import wandb
wandb.tensorboard.patch(root_logdir=osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")))
wandb.init(name=self.checkpoint_dir.split("/")[-1], project="APT36K")
from torch.utils.tensorboard import SummaryWriter
self.logger = SummaryWriter(osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")), flush_secs=10)
self.viz_data_iterator = indefinite_generator_from_list(self.val_loader) if self.visualize_validation else indefinite_generator_from_list(self.train_loader)
# self.viz_data_iterator = iter(self.viz_data_iterator)
if self.fix_viz_batch:
self.viz_batch = next(self.viz_data_iterator)
# train with cub
if self.train_with_cub:
self.cub_viz_data_iterator = indefinite_generator(self.val_loader_cub) if self.visualize_validation else indefinite_generator(self.train_loader_cub)
if self.fix_viz_batch:
self.viz_batch_cub = next(self.cub_viz_data_iterator)
# run epochs
epoch = 0
for epoch in range(start_epoch, self.num_epochs):
torch.distributed.barrier()
metrics = self.run_epoch(epoch)
if self.rank == 0:
self.metrics_trace.append("train", metrics)
if (epoch+1) % self.save_checkpoint_freq == 0:
self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True)
if self.cfgs.get('pyplot_metrics', True):
self.metrics_trace.plot(pdf_path=osp.join(self.checkpoint_dir, 'metrics.pdf'))
self.metrics_trace.save(osp.join(self.checkpoint_dir, 'metrics.json'))
if self.rank == 0:
print(f"Training completed for all {epoch+1} epochs.")
def dry_run(self):
print(f'rank: {self.rank}, dry_run!!!!!')
self.dry_run_iters = self.cfgs.get('dr_iters', 2)
self.resume = self.cfgs.get('dr_resume', True)
self.use_logger = self.cfgs.get('dr_use_logger', True)
self.log_freq_losses = self.cfgs.get('dr_log_freq_losses', 1)
self.save_result_freq = self.cfgs.get('dr_save_result_freq', 1)
self.log_freq_images = self.cfgs.get('dr_log_freq_images', 1)
self.log_train_images = self.cfgs.get('dr_log_train_images', True)
self.visualize_validation = self.cfgs.get('dr_visualize_validation', True)
self.num_epochs = self.cfgs.get('dr_num_epochs', 1)
self.train()
def run_epoch(self, epoch):
metrics = self.make_metrics()
self.model.set_train()
max_loader_len = max([len(loader) for loader in self.train_loader])
train_generators = [indefinite_generator(loader) for loader in self.train_loader]
iteration = 0
while iteration < max_loader_len * len(self.train_loader):
for generator in train_generators:
batch = next(generator)
self.total_iter += 1
if self.total_iter % 4000 == 0:
self.save_last_checkpoint(epoch+1, self.total_iter, optim=True)
num_seqs, num_frames = batch[0].shape[:2]
total_im_num = num_seqs * num_frames
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data=self.dataset, is_training=True)
if self.train_with_cub and epoch >= self.cub_start_epoch:
batch_cub = next(self.cub_train_data_iterator)
num_seqs, num_frames = batch_cub[0].shape[:2]
total_im_num += num_seqs * num_frames
m_cub = self.model.forward(batch_cub, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data='cub', is_training=True)
m.update({'cub_'+k: v for k,v in m_cub.items()})
m['total_loss'] = self.model.total_loss
self.model.backward()
if self.model.enable_disc and (self.model.mask_discriminator_iter[0] < self.total_iter) and (self.model.mask_discriminator_iter[1] > self.total_iter):
# the discriminator training
discriminator_loss_dict, grad_loss = self.model.discriminator_step()
m.update(
{
'mask_disc_loss_discriminator': discriminator_loss_dict['discriminator_loss'] - grad_loss,
'mask_disc_loss_discriminator_grad': grad_loss,
'mask_disc_loss_discriminator_rv': discriminator_loss_dict['discriminator_loss_rv'],
'mask_disc_loss_discriminator_iv': discriminator_loss_dict['discriminator_loss_iv'],
'mask_disc_loss_discriminator_gt': discriminator_loss_dict['discriminator_loss_gt']
}
)
self.logger.add_histogram('train_'+'discriminator_logits/random_view', discriminator_loss_dict['d_rv'], self.total_iter)
if discriminator_loss_dict['d_iv'] is not None:
self.logger.add_histogram('train_'+'discriminator_logits/input_view', discriminator_loss_dict['d_iv'], self.total_iter)
if discriminator_loss_dict['d_gt'] is not None:
self.logger.add_histogram('train_'+'discriminator_logits/gt_view', discriminator_loss_dict['d_gt'], self.total_iter)
metrics.update(m, total_im_num)
if self.rank == 0:
print(f"T{epoch:04}/{iteration:05}/{metrics}")
## reset optimizers
if self.cfgs.get('opt_reset_every_iter', 0) > 0 and self.total_iter < self.cfgs.get('opt_reset_end_iter', 0):
if self.total_iter % self.cfgs.get('opt_reset_every_iter', 0) == 0:
self.model.reset_optimizers()
if misc.is_main_process() and self.use_logger:
if self.rank == 0 and self.total_iter % self.log_freq_losses == 0:
for name, loss in m.items():
label = f'cub_loss_train/{name[4:]}' if 'cub' in name else f'loss_train/{name}'
self.logger.add_scalar(label, loss, self.total_iter)
if self.rank == 0 and self.save_result_freq is not None and self.total_iter % self.save_result_freq == 0:
with torch.no_grad():
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.train_result_dir, which_data=self.dataset, is_training=False)
torch.cuda.empty_cache()
if self.total_iter % self.log_freq_images == 0:
with torch.no_grad():
if self.rank == 0 and self.log_train_images:
m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='train_', is_training=False)
if self.fix_viz_batch:
print(f'fix_viz_batch:{self.fix_viz_batch}')
batch = self.viz_batch
else:
batch = next(self.viz_data_iterator)
if self.visualize_validation:
import time
vis_start = time.time()
batch = next(self.viz_data_iterator)
# try:
# batch = next(self.viz_data_iterator)
# except: # iterator exhausted
# self.reset_viz_data_iterator()
# batch = next(self.viz_data_iterator)
m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='val_', is_training=False)
vis_end = time.time()
print(f"vis time: {vis_end - vis_start}")
for name, loss in m.items():
if self.rank == 0:
self.logger.add_scalar(f'loss_val/{name}', loss, self.total_iter)
if self.train_with_cub and epoch >= self.cub_start_epoch:
if self.rank == 0 and self.log_train_images:
m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_train_', is_training=True)
if self.fix_viz_batch:
batch_cub = self.viz_batch_cub
elif self.visualize_validation:
batch_cub = next(self.cub_viz_data_iterator)
# try:
# batch = next(self.viz_data_iterator)
# except: # iterator exhausted
# self.reset_viz_data_iterator()
# batch = next(self.viz_data_iterator)
if self.rank == 0:
m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_val_', is_training=False)
for name, loss in m.items():
self.logger.add_scalar(f'cub_loss_val/{name}', loss, self.total_iter)
torch.cuda.empty_cache()
if self.is_dry_run and iteration >= self.dry_run_iters:
break
iteration += 1
self.model.scheduler_step()
return metrics
|