File size: 16,747 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

from multiprocessing.spawn import get_preparation_data
import numpy as np
import torch

from ..render import mesh
from ..render import render
from ..networks import MLPWithPositionalEncoding, MLPWithPositionalEncoding_Style

###############################################################################
# Marching tetrahedrons implementation (differentiable), adapted from
# https://github.com/NVIDIAGameWorks/kaolin/blob/master/kaolin/ops/conversions/tetmesh.py
#
# Note this only supports batch size = 1.
###############################################################################

class DMTet:
    def __init__(self):
        self.triangle_table = torch.tensor([
                [-1, -1, -1, -1, -1, -1],
                [ 1,  0,  2, -1, -1, -1],
                [ 4,  0,  3, -1, -1, -1],
                [ 1,  4,  2,  1,  3,  4],
                [ 3,  1,  5, -1, -1, -1],
                [ 2,  3,  0,  2,  5,  3],
                [ 1,  4,  0,  1,  5,  4],
                [ 4,  2,  5, -1, -1, -1],
                [ 4,  5,  2, -1, -1, -1],
                [ 4,  1,  0,  4,  5,  1],
                [ 3,  2,  0,  3,  5,  2],
                [ 1,  3,  5, -1, -1, -1],
                [ 4,  1,  2,  4,  3,  1],
                [ 3,  0,  4, -1, -1, -1],
                [ 2,  0,  1, -1, -1, -1],
                [-1, -1, -1, -1, -1, -1]
                ], dtype=torch.long, device='cuda')

        self.num_triangles_table = torch.tensor([0,1,1,2,1,2,2,1,1,2,2,1,2,1,1,0], dtype=torch.long, device='cuda')
        self.base_tet_edges = torch.tensor([0,1,0,2,0,3,1,2,1,3,2,3], dtype=torch.long, device='cuda')

    ###############################################################################
    # Utility functions
    ###############################################################################

    def sort_edges(self, edges_ex2):
        with torch.no_grad():
            order = (edges_ex2[:,0] > edges_ex2[:,1]).long()
            order = order.unsqueeze(dim=1)

            a = torch.gather(input=edges_ex2, index=order, dim=1)      
            b = torch.gather(input=edges_ex2, index=1-order, dim=1)  

        return torch.stack([a, b],-1)

    def map_uv(self, faces, face_gidx, max_idx):
        N = int(np.ceil(np.sqrt((max_idx+1)//2)))
        tex_y, tex_x = torch.meshgrid(
            torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"),
            torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"),
            indexing='ij'
        )

        pad = 0.9 / N

        uvs = torch.stack([
            tex_x      , tex_y,
            tex_x + pad, tex_y,
            tex_x + pad, tex_y + pad,
            tex_x      , tex_y + pad
        ], dim=-1).view(-1, 2)

        def _idx(tet_idx, N):
            x = tet_idx % N
            y = torch.div(tet_idx, N, rounding_mode='trunc')
            return y * N + x

        tet_idx = _idx(torch.div(face_gidx, 2, rounding_mode='trunc'), N)
        tri_idx = face_gidx % 2

        uv_idx = torch.stack((
            tet_idx * 4, tet_idx * 4 + tri_idx + 1, tet_idx * 4 + tri_idx + 2
        ), dim = -1). view(-1, 3)

        return uvs, uv_idx

    ###############################################################################
    # Marching tets implementation
    ###############################################################################

    def __call__(self, pos_nx3, sdf_n, tet_fx4):
        with torch.no_grad():
            occ_n = sdf_n > 0
            occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1,4)
            occ_sum = torch.sum(occ_fx4, -1)
            valid_tets = (occ_sum>0) & (occ_sum<4)
            occ_sum = occ_sum[valid_tets]

            # find all vertices
            all_edges = tet_fx4[valid_tets][:,self.base_tet_edges].reshape(-1,2)
            all_edges = self.sort_edges(all_edges)
            unique_edges, idx_map = torch.unique(all_edges,dim=0, return_inverse=True)  
            
            unique_edges = unique_edges.long()
            mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1,2).sum(-1) == 1
            mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device="cuda") * -1
            mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long,device="cuda")
            idx_map = mapping[idx_map] # map edges to verts

            interp_v = unique_edges[mask_edges]
        edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1,2,3)
        edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1,2,1)
        edges_to_interp_sdf[:,-1] *= -1

        denominator = edges_to_interp_sdf.sum(1,keepdim = True)

        edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1])/denominator
        verts = (edges_to_interp * edges_to_interp_sdf).sum(1)

        idx_map = idx_map.reshape(-1,6)

        v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device="cuda"))
        tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
        num_triangles = self.num_triangles_table[tetindex]

        # Generate triangle indices
        faces = torch.cat((
            torch.gather(input=idx_map[num_triangles == 1], dim=1, index=self.triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1,3),
            torch.gather(input=idx_map[num_triangles == 2], dim=1, index=self.triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1,3),
        ), dim=0)

        # Get global face index (static, does not depend on topology)
        num_tets = tet_fx4.shape[0]
        tet_gidx = torch.arange(num_tets, dtype=torch.long, device="cuda")[valid_tets]
        face_gidx = torch.cat((
            tet_gidx[num_triangles == 1]*2,
            torch.stack((tet_gidx[num_triangles == 2]*2, tet_gidx[num_triangles == 2]*2 + 1), dim=-1).view(-1)
        ), dim=0)

        uvs, uv_idx = self.map_uv(faces, face_gidx, num_tets*2)

        return verts, faces, uvs, uv_idx

###############################################################################
# Regularizer
###############################################################################

def sdf_bce_reg_loss(sdf, all_edges):
    sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1,2)
    mask = torch.sign(sdf_f1x6x2[...,0]) != torch.sign(sdf_f1x6x2[...,1])
    sdf_f1x6x2 = sdf_f1x6x2[mask]
    sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[...,0], (sdf_f1x6x2[...,1] > 0).float()) + \
               torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[...,1], (sdf_f1x6x2[...,0] > 0).float())
    if torch.isnan(sdf_diff).any():
        import ipdb; ipdb.set_trace()
    return sdf_diff

###############################################################################
#  Geometry interface
###############################################################################

class DMTetGeometry(torch.nn.Module):
    def __init__(self, grid_res, scale, sdf_mode, num_layers=None, hidden_size=None, embedder_freq=None, embed_concat_pts=True, init_sdf=None, jitter_grid=0., perturb_sdf_iter=10000, sym_prior_shape=False, dim_of_classes=0, condition_choice='concat'):
        super(DMTetGeometry, self).__init__()

        self.sdf_mode = sdf_mode
        self.grid_res      = grid_res
        self.marching_tets = DMTet()
        self.grid_scale = scale
        self.init_sdf = init_sdf
        self.jitter_grid = jitter_grid
        self.perturb_sdf_iter = perturb_sdf_iter
        self.sym_prior_shape = sym_prior_shape
        self.load_tets(self.grid_res, self.grid_scale)

        if sdf_mode == "param":
            sdf = torch.rand_like(self.verts[:,0]) - 0.1  # Random init.
            self.sdf    = torch.nn.Parameter(sdf.clone().detach(), requires_grad=True)
            self.register_parameter('sdf', self.sdf)
            self.deform = torch.nn.Parameter(torch.zeros_like(self.verts), requires_grad=True)
            self.register_parameter('deform', self.deform)
        else:
            embedder_scaler = 2 * np.pi / self.grid_scale * 0.9  # originally (-0.5*s, 0.5*s) rescale to (-pi, pi) * 0.9

            if dim_of_classes == 0 or (dim_of_classes != 0 and condition_choice == 'concat'):
                self.mlp = MLPWithPositionalEncoding(
                    3, 
                    1, 
                    num_layers, 
                    nf=hidden_size, 
                    extra_dim=dim_of_classes,
                    dropout=0, 
                    activation=None, 
                    n_harmonic_functions=embedder_freq, 
                    omega0=embedder_scaler,
                    embed_concat_pts=embed_concat_pts)
            
            elif condition_choice == 'film' or condition_choice == 'mod':
                self.mlp = MLPWithPositionalEncoding_Style(
                    3, 
                    1, 
                    num_layers, 
                    nf=hidden_size, 
                    extra_dim=dim_of_classes,
                    dropout=0, 
                    activation=None, 
                    n_harmonic_functions=embedder_freq, 
                    omega0=embedder_scaler,
                    embed_concat_pts=embed_concat_pts,
                    style_choice=condition_choice)

            else:
                raise NotImplementedError

    def load_tets(self, grid_res=None, scale=None):
        if grid_res is None:
            grid_res = self.grid_res
        else:
            self.grid_res = grid_res
        if scale is None:
            scale = self.grid_scale
        else:
            self.grid_scale = scale
        tets = np.load('./data/tets/{}_tets.npz'.format(grid_res))
        self.verts = torch.tensor(tets['vertices'], dtype=torch.float32, device='cuda') * scale  # verts original scale (-0.5, 0.5)
        self.indices = torch.tensor(tets['indices'], dtype=torch.long, device='cuda')
        self.generate_edges()

    def get_sdf(self, pts=None, perturb_sdf=False, total_iter=0, class_vector=None):
        if self.sdf_mode == 'param':
            sdf = self.sdf
        else:
            if pts is None:
                pts = self.verts
            if self.sym_prior_shape:
                xs, ys, zs = pts.unbind(-1)
                pts = torch.stack([xs.abs(), ys, zs], -1)  # mirror -x to +x
            feat = None
            if class_vector is not None:
                feat = class_vector.unsqueeze(0).repeat(pts.shape[0], 1)
            sdf = self.mlp(pts, feat=feat)

        if self.init_sdf is None:
            pass
        elif type(self.init_sdf) in [float, int]:
            sdf = sdf + self.init_sdf
        elif self.init_sdf == 'sphere':
            init_radius = self.grid_scale * 0.25
            init_sdf = init_radius - pts.norm(dim=-1, keepdim=True)  # init sdf is a sphere centered at origin
            sdf = sdf + init_sdf
        elif self.init_sdf == 'ellipsoid':
            rxy = self.grid_scale * 0.15
            xs, ys, zs = pts.unbind(-1)[:3]
            init_sdf = rxy - torch.stack([xs, ys, zs/2], -1).norm(dim=-1, keepdim=True)  # init sdf is approximately an ellipsoid centered at origin
            sdf = sdf + init_sdf
        else:
            raise NotImplementedError

        if perturb_sdf:
            sdf = sdf + torch.randn_like(sdf) * 0.1 * max(0, 1-total_iter/self.perturb_sdf_iter)
        return sdf

    def get_sdf_gradient(self, class_vector=None):
        assert self.sdf_mode == 'mlp', "Only MLP supports gradient computation."
        num_samples = 5000
        sample_points = (torch.rand(num_samples, 3, device=self.verts.device) - 0.5) * self.grid_scale
        mesh_verts = self.mesh_verts.detach() + (torch.rand_like(self.mesh_verts) -0.5) * 0.1 * self.grid_scale
        rand_idx = torch.randperm(len(mesh_verts), device=mesh_verts.device)[:5000]
        mesh_verts = mesh_verts[rand_idx]
        sample_points = torch.cat([sample_points, mesh_verts], 0)
        sample_points.requires_grad = True
        y = self.get_sdf(pts=sample_points, perturb_sdf=False, class_vector=class_vector)
        d_output = torch.ones_like(y, requires_grad=False, device=y.device)
        try:
            gradients = torch.autograd.grad(
                outputs=[y],
                inputs=sample_points,
                grad_outputs=d_output,
                create_graph=True,
                retain_graph=True,
                only_inputs=True)[0]
        except RuntimeError:  # For validation, we have disabled gradient calculation.
            return torch.zeros_like(sample_points)
        return gradients

    def get_sdf_reg_loss(self, class_vector=None):
        reg_loss = {"sdf_bce_reg_loss": sdf_bce_reg_loss(self.current_sdf, self.all_edges).mean()}
        if self.sdf_mode == 'mlp':
            reg_loss["sdf_gradient_reg_loss"] = ((self.get_sdf_gradient(class_vector=class_vector).norm(dim=-1) - 1) ** 2).mean()
        reg_loss['sdf_inflate_reg_loss'] = -self.current_sdf.mean()
        return reg_loss
    
    def generate_edges(self):
        with torch.no_grad():
            edges = torch.tensor([0,1,0,2,0,3,1,2,1,3,2,3], dtype = torch.long, device = "cuda")
            all_edges = self.indices[:,edges].reshape(-1,2)
            all_edges_sorted = torch.sort(all_edges, dim=1)[0]
            self.all_edges = torch.unique(all_edges_sorted, dim=0)

    @torch.no_grad()
    def getAABB(self):
        return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values

    def getMesh(self, material=None, perturb_sdf=False, total_iter=0, jitter_grid=True, class_vector=None):
        # Run DM tet to get a base mesh
        v_deformed = self.verts

        # if self.FLAGS.deform_grid:
        #     v_deformed = self.verts + 2 / (self.grid_res * 2) * torch.tanh(self.deform)
        # else:
        #     v_deformed = self.verts
        if jitter_grid and self.jitter_grid > 0:
            jitter = (torch.rand(1, device=v_deformed.device)*2-1) * self.jitter_grid * self.grid_scale
            v_deformed = v_deformed + jitter

        self.current_sdf = self.get_sdf(v_deformed, perturb_sdf=perturb_sdf, total_iter=total_iter, class_vector=class_vector)
        verts, faces, uvs, uv_idx = self.marching_tets(v_deformed, self.current_sdf, self.indices)
        self.mesh_verts = verts
        return mesh.make_mesh(verts[None], faces[None], uvs[None], uv_idx[None], material)

    def render(self, glctx, target, lgt, opt_material, bsdf=None):
        opt_mesh = self.getMesh(opt_material)
        return render.render_mesh(glctx, opt_mesh, target['mvp'], target['campos'], lgt, target['resolution'], spp=target['spp'], msaa=True, background=target['background'], bsdf=bsdf)

    def tick(self, glctx, target, lgt, opt_material, loss_fn, iteration):
        # ==============================================================================================
        #  Render optimizable object with identical conditions
        # ==============================================================================================
        buffers = self.render(glctx, target, lgt, opt_material)

        # ==============================================================================================
        #  Compute loss
        # ==============================================================================================
        t_iter = iteration / 20000

        # Image-space loss, split into a coverage component and a color component
        color_ref = target['img']
        img_loss = torch.nn.functional.mse_loss(buffers['shaded'][..., 3:], color_ref[..., 3:]) 
        img_loss = img_loss + loss_fn(buffers['shaded'][..., 0:3] * color_ref[..., 3:], color_ref[..., 0:3] * color_ref[..., 3:])

        # SDF regularizer
        # sdf_weight = self.sdf_regularizer - (self.sdf_regularizer - 0.01) * min(1.0, 4.0 * t_iter)  # Dropoff to 0.01
        reg_loss = sum(self.get_sdf_reg_loss().values)

        # Albedo (k_d) smoothnesss regularizer
        reg_loss += torch.mean(buffers['kd_grad'][..., :-1] * buffers['kd_grad'][..., -1:]) * 0.03 * min(1.0, iteration / 500)

        # Visibility regularizer
        reg_loss += torch.mean(buffers['occlusion'][..., :-1] * buffers['occlusion'][..., -1:]) * 0.001 * min(1.0, iteration / 500)

        # Light white balance regularizer
        reg_loss = reg_loss + lgt.regularizer() * 0.005

        return img_loss, reg_loss