Spaces:
Sleeping
Sleeping
File size: 16,747 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
from multiprocessing.spawn import get_preparation_data
import numpy as np
import torch
from ..render import mesh
from ..render import render
from ..networks import MLPWithPositionalEncoding, MLPWithPositionalEncoding_Style
###############################################################################
# Marching tetrahedrons implementation (differentiable), adapted from
# https://github.com/NVIDIAGameWorks/kaolin/blob/master/kaolin/ops/conversions/tetmesh.py
#
# Note this only supports batch size = 1.
###############################################################################
class DMTet:
def __init__(self):
self.triangle_table = torch.tensor([
[-1, -1, -1, -1, -1, -1],
[ 1, 0, 2, -1, -1, -1],
[ 4, 0, 3, -1, -1, -1],
[ 1, 4, 2, 1, 3, 4],
[ 3, 1, 5, -1, -1, -1],
[ 2, 3, 0, 2, 5, 3],
[ 1, 4, 0, 1, 5, 4],
[ 4, 2, 5, -1, -1, -1],
[ 4, 5, 2, -1, -1, -1],
[ 4, 1, 0, 4, 5, 1],
[ 3, 2, 0, 3, 5, 2],
[ 1, 3, 5, -1, -1, -1],
[ 4, 1, 2, 4, 3, 1],
[ 3, 0, 4, -1, -1, -1],
[ 2, 0, 1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1]
], dtype=torch.long, device='cuda')
self.num_triangles_table = torch.tensor([0,1,1,2,1,2,2,1,1,2,2,1,2,1,1,0], dtype=torch.long, device='cuda')
self.base_tet_edges = torch.tensor([0,1,0,2,0,3,1,2,1,3,2,3], dtype=torch.long, device='cuda')
###############################################################################
# Utility functions
###############################################################################
def sort_edges(self, edges_ex2):
with torch.no_grad():
order = (edges_ex2[:,0] > edges_ex2[:,1]).long()
order = order.unsqueeze(dim=1)
a = torch.gather(input=edges_ex2, index=order, dim=1)
b = torch.gather(input=edges_ex2, index=1-order, dim=1)
return torch.stack([a, b],-1)
def map_uv(self, faces, face_gidx, max_idx):
N = int(np.ceil(np.sqrt((max_idx+1)//2)))
tex_y, tex_x = torch.meshgrid(
torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"),
torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"),
indexing='ij'
)
pad = 0.9 / N
uvs = torch.stack([
tex_x , tex_y,
tex_x + pad, tex_y,
tex_x + pad, tex_y + pad,
tex_x , tex_y + pad
], dim=-1).view(-1, 2)
def _idx(tet_idx, N):
x = tet_idx % N
y = torch.div(tet_idx, N, rounding_mode='trunc')
return y * N + x
tet_idx = _idx(torch.div(face_gidx, 2, rounding_mode='trunc'), N)
tri_idx = face_gidx % 2
uv_idx = torch.stack((
tet_idx * 4, tet_idx * 4 + tri_idx + 1, tet_idx * 4 + tri_idx + 2
), dim = -1). view(-1, 3)
return uvs, uv_idx
###############################################################################
# Marching tets implementation
###############################################################################
def __call__(self, pos_nx3, sdf_n, tet_fx4):
with torch.no_grad():
occ_n = sdf_n > 0
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1,4)
occ_sum = torch.sum(occ_fx4, -1)
valid_tets = (occ_sum>0) & (occ_sum<4)
occ_sum = occ_sum[valid_tets]
# find all vertices
all_edges = tet_fx4[valid_tets][:,self.base_tet_edges].reshape(-1,2)
all_edges = self.sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges,dim=0, return_inverse=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1,2).sum(-1) == 1
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device="cuda") * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long,device="cuda")
idx_map = mapping[idx_map] # map edges to verts
interp_v = unique_edges[mask_edges]
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1,2,3)
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1,2,1)
edges_to_interp_sdf[:,-1] *= -1
denominator = edges_to_interp_sdf.sum(1,keepdim = True)
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1])/denominator
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
idx_map = idx_map.reshape(-1,6)
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device="cuda"))
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
num_triangles = self.num_triangles_table[tetindex]
# Generate triangle indices
faces = torch.cat((
torch.gather(input=idx_map[num_triangles == 1], dim=1, index=self.triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1,3),
torch.gather(input=idx_map[num_triangles == 2], dim=1, index=self.triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1,3),
), dim=0)
# Get global face index (static, does not depend on topology)
num_tets = tet_fx4.shape[0]
tet_gidx = torch.arange(num_tets, dtype=torch.long, device="cuda")[valid_tets]
face_gidx = torch.cat((
tet_gidx[num_triangles == 1]*2,
torch.stack((tet_gidx[num_triangles == 2]*2, tet_gidx[num_triangles == 2]*2 + 1), dim=-1).view(-1)
), dim=0)
uvs, uv_idx = self.map_uv(faces, face_gidx, num_tets*2)
return verts, faces, uvs, uv_idx
###############################################################################
# Regularizer
###############################################################################
def sdf_bce_reg_loss(sdf, all_edges):
sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1,2)
mask = torch.sign(sdf_f1x6x2[...,0]) != torch.sign(sdf_f1x6x2[...,1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[...,0], (sdf_f1x6x2[...,1] > 0).float()) + \
torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[...,1], (sdf_f1x6x2[...,0] > 0).float())
if torch.isnan(sdf_diff).any():
import ipdb; ipdb.set_trace()
return sdf_diff
###############################################################################
# Geometry interface
###############################################################################
class DMTetGeometry(torch.nn.Module):
def __init__(self, grid_res, scale, sdf_mode, num_layers=None, hidden_size=None, embedder_freq=None, embed_concat_pts=True, init_sdf=None, jitter_grid=0., perturb_sdf_iter=10000, sym_prior_shape=False, dim_of_classes=0, condition_choice='concat'):
super(DMTetGeometry, self).__init__()
self.sdf_mode = sdf_mode
self.grid_res = grid_res
self.marching_tets = DMTet()
self.grid_scale = scale
self.init_sdf = init_sdf
self.jitter_grid = jitter_grid
self.perturb_sdf_iter = perturb_sdf_iter
self.sym_prior_shape = sym_prior_shape
self.load_tets(self.grid_res, self.grid_scale)
if sdf_mode == "param":
sdf = torch.rand_like(self.verts[:,0]) - 0.1 # Random init.
self.sdf = torch.nn.Parameter(sdf.clone().detach(), requires_grad=True)
self.register_parameter('sdf', self.sdf)
self.deform = torch.nn.Parameter(torch.zeros_like(self.verts), requires_grad=True)
self.register_parameter('deform', self.deform)
else:
embedder_scaler = 2 * np.pi / self.grid_scale * 0.9 # originally (-0.5*s, 0.5*s) rescale to (-pi, pi) * 0.9
if dim_of_classes == 0 or (dim_of_classes != 0 and condition_choice == 'concat'):
self.mlp = MLPWithPositionalEncoding(
3,
1,
num_layers,
nf=hidden_size,
extra_dim=dim_of_classes,
dropout=0,
activation=None,
n_harmonic_functions=embedder_freq,
omega0=embedder_scaler,
embed_concat_pts=embed_concat_pts)
elif condition_choice == 'film' or condition_choice == 'mod':
self.mlp = MLPWithPositionalEncoding_Style(
3,
1,
num_layers,
nf=hidden_size,
extra_dim=dim_of_classes,
dropout=0,
activation=None,
n_harmonic_functions=embedder_freq,
omega0=embedder_scaler,
embed_concat_pts=embed_concat_pts,
style_choice=condition_choice)
else:
raise NotImplementedError
def load_tets(self, grid_res=None, scale=None):
if grid_res is None:
grid_res = self.grid_res
else:
self.grid_res = grid_res
if scale is None:
scale = self.grid_scale
else:
self.grid_scale = scale
tets = np.load('./data/tets/{}_tets.npz'.format(grid_res))
self.verts = torch.tensor(tets['vertices'], dtype=torch.float32, device='cuda') * scale # verts original scale (-0.5, 0.5)
self.indices = torch.tensor(tets['indices'], dtype=torch.long, device='cuda')
self.generate_edges()
def get_sdf(self, pts=None, perturb_sdf=False, total_iter=0, class_vector=None):
if self.sdf_mode == 'param':
sdf = self.sdf
else:
if pts is None:
pts = self.verts
if self.sym_prior_shape:
xs, ys, zs = pts.unbind(-1)
pts = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
feat = None
if class_vector is not None:
feat = class_vector.unsqueeze(0).repeat(pts.shape[0], 1)
sdf = self.mlp(pts, feat=feat)
if self.init_sdf is None:
pass
elif type(self.init_sdf) in [float, int]:
sdf = sdf + self.init_sdf
elif self.init_sdf == 'sphere':
init_radius = self.grid_scale * 0.25
init_sdf = init_radius - pts.norm(dim=-1, keepdim=True) # init sdf is a sphere centered at origin
sdf = sdf + init_sdf
elif self.init_sdf == 'ellipsoid':
rxy = self.grid_scale * 0.15
xs, ys, zs = pts.unbind(-1)[:3]
init_sdf = rxy - torch.stack([xs, ys, zs/2], -1).norm(dim=-1, keepdim=True) # init sdf is approximately an ellipsoid centered at origin
sdf = sdf + init_sdf
else:
raise NotImplementedError
if perturb_sdf:
sdf = sdf + torch.randn_like(sdf) * 0.1 * max(0, 1-total_iter/self.perturb_sdf_iter)
return sdf
def get_sdf_gradient(self, class_vector=None):
assert self.sdf_mode == 'mlp', "Only MLP supports gradient computation."
num_samples = 5000
sample_points = (torch.rand(num_samples, 3, device=self.verts.device) - 0.5) * self.grid_scale
mesh_verts = self.mesh_verts.detach() + (torch.rand_like(self.mesh_verts) -0.5) * 0.1 * self.grid_scale
rand_idx = torch.randperm(len(mesh_verts), device=mesh_verts.device)[:5000]
mesh_verts = mesh_verts[rand_idx]
sample_points = torch.cat([sample_points, mesh_verts], 0)
sample_points.requires_grad = True
y = self.get_sdf(pts=sample_points, perturb_sdf=False, class_vector=class_vector)
d_output = torch.ones_like(y, requires_grad=False, device=y.device)
try:
gradients = torch.autograd.grad(
outputs=[y],
inputs=sample_points,
grad_outputs=d_output,
create_graph=True,
retain_graph=True,
only_inputs=True)[0]
except RuntimeError: # For validation, we have disabled gradient calculation.
return torch.zeros_like(sample_points)
return gradients
def get_sdf_reg_loss(self, class_vector=None):
reg_loss = {"sdf_bce_reg_loss": sdf_bce_reg_loss(self.current_sdf, self.all_edges).mean()}
if self.sdf_mode == 'mlp':
reg_loss["sdf_gradient_reg_loss"] = ((self.get_sdf_gradient(class_vector=class_vector).norm(dim=-1) - 1) ** 2).mean()
reg_loss['sdf_inflate_reg_loss'] = -self.current_sdf.mean()
return reg_loss
def generate_edges(self):
with torch.no_grad():
edges = torch.tensor([0,1,0,2,0,3,1,2,1,3,2,3], dtype = torch.long, device = "cuda")
all_edges = self.indices[:,edges].reshape(-1,2)
all_edges_sorted = torch.sort(all_edges, dim=1)[0]
self.all_edges = torch.unique(all_edges_sorted, dim=0)
@torch.no_grad()
def getAABB(self):
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
def getMesh(self, material=None, perturb_sdf=False, total_iter=0, jitter_grid=True, class_vector=None):
# Run DM tet to get a base mesh
v_deformed = self.verts
# if self.FLAGS.deform_grid:
# v_deformed = self.verts + 2 / (self.grid_res * 2) * torch.tanh(self.deform)
# else:
# v_deformed = self.verts
if jitter_grid and self.jitter_grid > 0:
jitter = (torch.rand(1, device=v_deformed.device)*2-1) * self.jitter_grid * self.grid_scale
v_deformed = v_deformed + jitter
self.current_sdf = self.get_sdf(v_deformed, perturb_sdf=perturb_sdf, total_iter=total_iter, class_vector=class_vector)
verts, faces, uvs, uv_idx = self.marching_tets(v_deformed, self.current_sdf, self.indices)
self.mesh_verts = verts
return mesh.make_mesh(verts[None], faces[None], uvs[None], uv_idx[None], material)
def render(self, glctx, target, lgt, opt_material, bsdf=None):
opt_mesh = self.getMesh(opt_material)
return render.render_mesh(glctx, opt_mesh, target['mvp'], target['campos'], lgt, target['resolution'], spp=target['spp'], msaa=True, background=target['background'], bsdf=bsdf)
def tick(self, glctx, target, lgt, opt_material, loss_fn, iteration):
# ==============================================================================================
# Render optimizable object with identical conditions
# ==============================================================================================
buffers = self.render(glctx, target, lgt, opt_material)
# ==============================================================================================
# Compute loss
# ==============================================================================================
t_iter = iteration / 20000
# Image-space loss, split into a coverage component and a color component
color_ref = target['img']
img_loss = torch.nn.functional.mse_loss(buffers['shaded'][..., 3:], color_ref[..., 3:])
img_loss = img_loss + loss_fn(buffers['shaded'][..., 0:3] * color_ref[..., 3:], color_ref[..., 0:3] * color_ref[..., 3:])
# SDF regularizer
# sdf_weight = self.sdf_regularizer - (self.sdf_regularizer - 0.01) * min(1.0, 4.0 * t_iter) # Dropoff to 0.01
reg_loss = sum(self.get_sdf_reg_loss().values)
# Albedo (k_d) smoothnesss regularizer
reg_loss += torch.mean(buffers['kd_grad'][..., :-1] * buffers['kd_grad'][..., -1:]) * 0.03 * min(1.0, iteration / 500)
# Visibility regularizer
reg_loss += torch.mean(buffers['occlusion'][..., :-1] * buffers['occlusion'][..., -1:]) * 0.001 * min(1.0, iteration / 500)
# Light white balance regularizer
reg_loss = reg_loss + lgt.regularizer() * 0.005
return img_loss, reg_loss
|