Spaces:
Sleeping
Sleeping
File size: 88,699 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 |
from multiprocessing.spawn import prepare
from turtle import forward
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import nvdiffrast.torch as dr
import numpy as np
import matplotlib.pyplot as plt
import os
import os.path as osp
from video3d.render.regularizer import get_edge_length, normal_consistency
from . import networks
from .renderer import *
from .utils import misc, meters, flow_viz, arap, custom_loss
from .dataloaders import get_sequence_loader, get_image_loader
from .cub_dataloaders import get_cub_loader
from .utils.skinning_v4 import estimate_bones, skinning
import lpips
from einops import rearrange
from .geometry.dmtet import DMTetGeometry
from .geometry.dlmesh import DLMesh
from .render import renderutils as ru
from .render import material
from .render import mlptexture
from .render import util
from .render import mesh
from .render import light
from .render import render
EPS = 1e-7
def get_optimizer(model, lr=0.0001, betas=(0.9, 0.999), weight_decay=0):
return torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=lr, betas=betas, weight_decay=weight_decay)
def set_requires_grad(model, requires_grad):
if model is not None:
for param in model.parameters():
param.requires_grad = requires_grad
def forward_to_matrix(vec_forward, up=[0,1,0]):
up = torch.FloatTensor(up).to(vec_forward.device)
# vec_forward = nn.functional.normalize(vec_forward, p=2, dim=-1) # x right, y up, z forward
vec_right = up.expand_as(vec_forward).cross(vec_forward, dim=-1)
vec_right = nn.functional.normalize(vec_right, p=2, dim=-1)
vec_up = vec_forward.cross(vec_right, dim=-1)
vec_up = nn.functional.normalize(vec_up, p=2, dim=-1)
rot_mat = torch.stack([vec_right, vec_up, vec_forward], -2)
return rot_mat
def sample_pose_hypothesis_from_quad_prediction(poses_raw, total_iter, batch_size, num_frames, pose_xflip_recon=False, input_image_xflip_flag=None, rot_temp_scalar=1., num_hypos=4, naive_probs_iter=2000, best_pose_start_iter=6000, random_sample=True):
rots_pred = poses_raw[..., :num_hypos*4].view(-1, num_hypos, 4)
rots_logits = rots_pred[..., 0] # Nx4
temp = 1 / np.clip(total_iter / 1000 / rot_temp_scalar, 1., 100.)
rots_probs = torch.nn.functional.softmax(-rots_logits / temp, dim=1) # N x K
# naive_probs = torch.FloatTensor([10] + [1] * (num_hypos - 1)).to(rots_logits.device)
naive_probs = torch.ones(num_hypos).to(rots_logits.device)
naive_probs = naive_probs / naive_probs.sum()
naive_probs_weight = np.clip(1 - (total_iter - naive_probs_iter) / 2000, 0, 1)
rots_probs = naive_probs.view(1, num_hypos) * naive_probs_weight + rots_probs * (1 - naive_probs_weight)
rots_pred = rots_pred[..., 1:4]
trans_pred = poses_raw[..., -3:]
best_rot_idx = torch.argmax(rots_probs, dim=1) # N
if random_sample:
# rand_rot_idx = torch.randint(0, 4, (batch_size * num_frames,), device=poses_raw.device) # N
rand_rot_idx = torch.randperm(batch_size * num_frames, device=poses_raw.device) % num_hypos # N
# rand_rot_idx = torch.randperm(batch_size, device=poses_raw.device)[:,None].repeat(1, num_frames).view(-1) % 4 # N
best_flag = (torch.randperm(batch_size * num_frames, device=poses_raw.device) / (batch_size * num_frames) < np.clip((total_iter - best_pose_start_iter)/2000, 0, 0.8)).long()
rand_flag = 1 - best_flag
# best_flag = torch.zeros_like(best_rot_idx)
rot_idx = best_rot_idx * best_flag + rand_rot_idx * (1 - best_flag)
else:
rand_flag = torch.zeros_like(best_rot_idx)
rot_idx = best_rot_idx
rot_pred = torch.gather(rots_pred, 1, rot_idx[:, None, None].expand(-1, 1, 3))[:, 0] # Nx3
pose_raw = torch.cat([rot_pred, trans_pred], -1)
rot_prob = torch.gather(rots_probs, 1, rot_idx[:, None].expand(-1, 1))[:, 0] # N
rot_logit = torch.gather(rots_logits, 1, rot_idx[:, None].expand(-1, 1))[:, 0] # N
if pose_xflip_recon:
raise NotImplementedError
rot_mat = forward_to_matrix(pose_raw[:, :3], up=[0, 1, 0])
pose = torch.cat([rot_mat.view(batch_size * num_frames, -1), pose_raw[:, 3:]], -1)
return pose_raw, pose, rot_idx, rot_prob, rot_logit, rots_probs, rand_flag
class PriorPredictor(nn.Module):
def __init__(self, cfgs):
super().__init__()
dmtet_grid = cfgs.get('dmtet_grid', 64)
grid_scale = cfgs.get('grid_scale', 5)
prior_sdf_mode = cfgs.get('prior_sdf_mode', 'mlp')
num_layers_shape = cfgs.get('num_layers_shape', 5)
hidden_size = cfgs.get('hidden_size', 64)
embedder_freq_shape = cfgs.get('embedder_freq_shape', 8)
embed_concat_pts = cfgs.get('embed_concat_pts', True)
init_sdf = cfgs.get('init_sdf', None)
jitter_grid = cfgs.get('jitter_grid', 0.)
perturb_sdf_iter = cfgs.get('perturb_sdf_iter', 10000)
sym_prior_shape = cfgs.get('sym_prior_shape', False)
self.netShape = DMTetGeometry(dmtet_grid, grid_scale, prior_sdf_mode, num_layers=num_layers_shape, hidden_size=hidden_size, embedder_freq=embedder_freq_shape, embed_concat_pts=embed_concat_pts, init_sdf=init_sdf, jitter_grid=jitter_grid, perturb_sdf_iter=perturb_sdf_iter, sym_prior_shape=sym_prior_shape)
mlp_hidden_size = cfgs.get('hidden_size', 64)
tet_bbox = self.netShape.getAABB()
self.render_dino_mode = cfgs.get('render_dino_mode', None)
num_layers_dino = cfgs.get("num_layers_dino", 5)
dino_feature_recon_dim = cfgs.get('dino_feature_recon_dim', 64)
sym_dino = cfgs.get("sym_dino", False)
dino_min = torch.zeros(dino_feature_recon_dim) + cfgs.get('dino_min', 0.)
dino_max = torch.zeros(dino_feature_recon_dim) + cfgs.get('dino_max', 1.)
min_max = torch.stack((dino_min, dino_max), dim=0)
if self.render_dino_mode is None:
pass
elif self.render_dino_mode == 'feature_mlpnv':
self.netDINO = mlptexture.MLPTexture3D(tet_bbox, channels=dino_feature_recon_dim, internal_dims=mlp_hidden_size, hidden=num_layers_dino-1, feat_dim=0, min_max=min_max, bsdf=None, perturb_normal=False, symmetrize=sym_dino)
elif self.render_dino_mode == 'feature_mlp':
embedder_scaler = 2 * np.pi / grid_scale * 0.9 # originally (-0.5*s, 0.5*s) rescale to (-pi, pi) * 0.9
embed_concat_pts = cfgs.get('embed_concat_pts', True)
self.netDINO = networks.MLPTextureSimple(
3, # x, y, z coordinates
dino_feature_recon_dim,
num_layers_dino,
nf=mlp_hidden_size,
dropout=0,
activation="sigmoid",
min_max=min_max,
n_harmonic_functions=cfgs.get('embedder_freq_dino', 8),
omega0=embedder_scaler,
extra_dim=0,
embed_concat_pts=embed_concat_pts,
perturb_normal=False,
symmetrize=sym_dino
)
elif self.render_dino_mode == 'cluster':
num_layers_dino = cfgs.get("num_layers_dino", 5)
dino_cluster_dim = cfgs.get('dino_cluster_dim', 64)
self.netDINO = mlptexture.MLPTexture3D(tet_bbox, channels=dino_cluster_dim, internal_dims=mlp_hidden_size, hidden=num_layers_dino-1, feat_dim=0, min_max=None, bsdf=None, perturb_normal=False, symmetrize=sym_dino)
else:
raise NotImplementedError
def forward(self, perturb_sdf=False, total_iter=None, is_training=True):
prior_shape = self.netShape.getMesh(perturb_sdf=perturb_sdf, total_iter=total_iter, jitter_grid=is_training)
return prior_shape, self.netDINO
class InstancePredictor(nn.Module):
def __init__(self, cfgs, tet_bbox=None):
super().__init__()
self.cfgs = cfgs
self.grid_scale = cfgs.get('grid_scale', 5)
self.enable_encoder = cfgs.get('enable_encoder', False)
if self.enable_encoder:
encoder_latent_dim = cfgs.get('latent_dim', 256)
encoder_pretrained = cfgs.get('encoder_pretrained', False)
encoder_frozen = cfgs.get('encoder_frozen', False)
encoder_arch = cfgs.get('encoder_arch', 'simple')
in_image_size = cfgs.get('in_image_size', 256)
self.dino_feature_input = cfgs.get('dino_feature_input', False)
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
if encoder_arch == 'simple':
if self.dino_feature_input:
self.netEncoder = networks.EncoderWithDINO(cin_rgb=3, cin_dino=dino_feature_dim, cout=encoder_latent_dim, in_size=in_image_size, zdim=None, nf=64, activation=None)
else:
self.netEncoder = networks.Encoder(cin=3, cout=encoder_latent_dim, in_size=in_image_size, zdim=None, nf=64, activation=None)
elif encoder_arch == 'vgg':
self.netEncoder = networks.VGGEncoder(cout=encoder_latent_dim, pretrained=encoder_pretrained)
elif encoder_arch == 'resnet':
self.netEncoder = networks.ResnetEncoder(cout=encoder_latent_dim, pretrained=encoder_pretrained)
elif encoder_arch == 'vit':
which_vit = cfgs.get('which_vit', 'dino_vits8')
vit_final_layer_type = cfgs.get('vit_final_layer_type', 'conv')
self.netEncoder = networks.ViTEncoder(cout=encoder_latent_dim, which_vit=which_vit, pretrained=encoder_pretrained, frozen=encoder_frozen, in_size=in_image_size, final_layer_type=vit_final_layer_type)
else:
raise NotImplementedError
else:
encoder_latent_dim = 0
mlp_hidden_size = cfgs.get('hidden_size', 64)
bsdf = cfgs.get("bsdf", 'diffuse')
num_layers_tex = cfgs.get("num_layers_tex", 5)
feat_dim = cfgs.get("latent_dim", 64) if self.enable_encoder else 0
perturb_normal = cfgs.get("perturb_normal", False)
sym_texture = cfgs.get("sym_texture", False)
kd_min = torch.FloatTensor(cfgs.get('kd_min', [0., 0., 0., 0.]))
kd_max = torch.FloatTensor(cfgs.get('kd_max', [1., 1., 1., 1.]))
ks_min = torch.FloatTensor(cfgs.get('ks_min', [0., 0., 0.]))
ks_max = torch.FloatTensor(cfgs.get('ks_max', [0., 0., 0.]))
nrm_min = torch.FloatTensor(cfgs.get('nrm_min', [-1., -1., 0.]))
nrm_max = torch.FloatTensor(cfgs.get('nrm_max', [1., 1., 1.]))
mlp_min = torch.cat((kd_min[0:3], ks_min, nrm_min), dim=0)
mlp_max = torch.cat((kd_max[0:3], ks_max, nrm_max), dim=0)
min_max = torch.stack((mlp_min, mlp_max), dim=0)
out_chn = 9
# TODO: if the tet verts are deforming, we need to recompute tet_bbox
texture_mode = cfgs.get("texture_mode", 'mlp')
if texture_mode == 'mlpnv':
self.netTexture = mlptexture.MLPTexture3D(tet_bbox, channels=out_chn, internal_dims=mlp_hidden_size, hidden=num_layers_tex-1, feat_dim=feat_dim, min_max=min_max, bsdf=bsdf, perturb_normal=perturb_normal, symmetrize=sym_texture)
elif texture_mode == 'mlp':
embedder_scaler = 2 * np.pi / self.grid_scale * 0.9 # originally (-0.5*s, 0.5*s) rescale to (-pi, pi) * 0.9
embed_concat_pts = cfgs.get('embed_concat_pts', True)
self.netTexture = networks.MLPTextureSimple(
3, # x, y, z coordinates
out_chn,
num_layers_tex,
nf=mlp_hidden_size,
dropout=0,
activation="sigmoid",
min_max=min_max,
n_harmonic_functions=cfgs.get('embedder_freq_tex', 10),
omega0=embedder_scaler,
extra_dim=feat_dim,
embed_concat_pts=embed_concat_pts,
perturb_normal=perturb_normal,
symmetrize=sym_texture
)
self.rot_rep = cfgs.get('rot_rep', 'euler_angle')
self.enable_pose = cfgs.get('enable_pose', False)
if self.enable_pose:
cam_pos_z_offset = cfgs.get('cam_pos_z_offset', 10.)
fov = cfgs.get('crop_fov_approx', 25)
half_range = np.tan(fov /2 /180 * np.pi) * cam_pos_z_offset # 2.22
self.max_trans_xy_range = half_range * cfgs.get('max_trans_xy_range_ratio', 1.)
self.max_trans_z_range = half_range * cfgs.get('max_trans_z_range_ratio', 1.)
self.lookat_init = cfgs.get('lookat_init', None)
self.lookat_zeroy = cfgs.get('lookat_zeroy', False)
self.rot_temp_scalar = cfgs.get('rot_temp_scalar', 1.)
self.naive_probs_iter = cfgs.get('naive_probs_iter', 2000)
self.best_pose_start_iter = cfgs.get('best_pose_start_iter', 6000)
if self.rot_rep == 'euler_angle':
pose_cout = 6
elif self.rot_rep == 'quaternion':
pose_cout = 7
elif self.rot_rep == 'lookat':
pose_cout = 6
elif self.rot_rep == 'quadlookat':
self.num_pose_hypos = 4
pose_cout = (3 + 1) * self.num_pose_hypos + 3 # 4 forward vectors for 4 quadrants, 4 quadrant classification logits, 3 for translation
self.orthant_signs = torch.FloatTensor([[1,1,1], [-1,1,1], [-1,1,-1], [1,1,-1]])
elif self.rot_rep == 'octlookat':
self.num_pose_hypos = 8
pose_cout = (3 + 1) * self.num_pose_hypos + 3 # 4 forward vectors for 8 octants, 8 octant classification logits, 3 for translation
self.orthant_signs = torch.stack(torch.meshgrid([torch.arange(1, -2, -2)] *3), -1).view(-1, 3) # 8x3
else:
raise NotImplementedError
self.pose_arch = cfgs.get('pose_arch', 'mlp')
if self.pose_arch == 'mlp':
num_layers_pose = cfgs.get('num_layers_pose', 5)
self.netPose = networks.MLP(
encoder_latent_dim,
pose_cout,
num_layers_pose,
nf=mlp_hidden_size,
dropout=0,
activation=None
)
elif self.pose_arch == 'encoder':
if self.dino_feature_input:
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
self.netPose = networks.EncoderWithDINO(cin_rgb=3, cin_dino=dino_feature_dim, cout=pose_cout, in_size=in_image_size, zdim=None, nf=64, activation=None)
else:
self.netPose = networks.Encoder(cin=3, cout=pose_cout, in_size=in_image_size, zdim=None, nf=64, activation=None)
elif self.pose_arch in ['encoder_dino_patch_out', 'encoder_dino_patch_key']:
if which_vit == 'dino_vits8':
dino_feat_dim = 384
elif which_vit == 'dinov2_vits14':
dino_feat_dim = 384
elif which_vit == 'dino_vitb8':
dino_feat_dim = 768
self.netPose = networks.Encoder32(cin=dino_feat_dim, cout=pose_cout, nf=256, activation=None)
elif self.pose_arch == 'vit':
encoder_pretrained = cfgs.get('encoder_pretrained', False)
encoder_frozen = cfgs.get('encoder_frozen', False)
which_vit = cfgs.get('which_vit', 'dino_vits8')
vit_final_layer_type = cfgs.get('vit_final_layer_type', 'conv')
self.netPose = networks.ViTEncoder(cout=encoder_latent_dim, which_vit=which_vit, pretrained=encoder_pretrained, frozen=encoder_frozen, in_size=in_image_size, final_layer_type=vit_final_layer_type)
else:
raise NotImplementedError
self.enable_deform = cfgs.get('enable_deform', False)
if self.enable_deform:
embedder_scaler = 2 * np.pi / self.grid_scale * 0.9 # originally (-0.5*s, 0.5*s) rescale to (-pi, pi) * 0.9
embed_concat_pts = cfgs.get('embed_concat_pts', True)
num_layers_deform = cfgs.get('num_layers_deform', 5)
self.deform_epochs = np.arange(*cfgs.get('deform_epochs', [0, 0]))
sym_deform = cfgs.get("sym_deform", False)
self.netDeform = networks.MLPWithPositionalEncoding(
3, # x, y, z coordinates
3, # dx, dy, dz deformation
num_layers_deform,
nf=mlp_hidden_size,
dropout=0,
activation=None,
n_harmonic_functions=cfgs.get('embedder_freq_deform', 10),
omega0=embedder_scaler,
extra_dim=encoder_latent_dim,
embed_concat_pts=embed_concat_pts,
symmetrize=sym_deform
)
self.enable_articulation = cfgs.get('enable_articulation', False)
if self.enable_articulation:
self.num_body_bones = cfgs.get('num_body_bones', 4)
self.articulation_multiplier = cfgs.get('articulation_multiplier', 1)
self.static_root_bones = cfgs.get('static_root_bones', False)
self.skinning_temperature = cfgs.get('skinning_temperature', 1)
self.articulation_epochs = np.arange(*cfgs.get('articulation_epochs', [0, 0]))
self.num_legs = cfgs.get('num_legs', 0)
self.num_leg_bones = cfgs.get('num_leg_bones', 0)
self.body_bones_type = cfgs.get('body_bones_type', 'z_minmax')
self.perturb_articulation_epochs = np.arange(*cfgs.get('perturb_articulation_epochs', [0, 0]))
self.num_bones = self.num_body_bones + self.num_legs * self.num_leg_bones
self.constrain_legs = cfgs.get('constrain_legs', False)
self.attach_legs_to_body_epochs = np.arange(*cfgs.get('attach_legs_to_body_epochs', [0, 0]))
self.max_arti_angle = cfgs.get('max_arti_angle', 60)
num_layers_arti = cfgs.get('num_layers_arti', 5)
which_vit = cfgs.get('which_vit', 'dino_vits8')
if which_vit == 'dino_vits8':
dino_feat_dim = 384
elif which_vit == 'dino_vitb8':
dino_feat_dim = 768
self.articulation_arch = cfgs.get('articulation_arch', 'mlp')
self.articulation_feature_mode = cfgs.get('articulation_feature_mode', 'sample')
embedder_freq_arti = cfgs.get('embedder_freq_arti', 8)
if self.articulation_feature_mode == 'global':
feat_dim = encoder_latent_dim
elif self.articulation_feature_mode == 'sample':
feat_dim = dino_feat_dim
elif self.articulation_feature_mode == 'sample+global':
feat_dim = encoder_latent_dim + dino_feat_dim
if self.articulation_feature_mode == 'attention':
arti_feat_attn_zdim = cfgs.get('arti_feat_attn_zdim', 128)
pos_dim = 1 + 2 + 3*2
self.netFeatureAttn = networks.FeatureAttention(which_vit, pos_dim, embedder_freq_arti, arti_feat_attn_zdim, img_size=in_image_size)
embedder_scaler = np.pi * 0.9 # originally (-1, 1) rescale to (-pi, pi) * 0.9
self.netArticulation = networks.ArticulationNetwork(self.articulation_arch, feat_dim, 1+2+3*2, num_layers_arti, mlp_hidden_size, n_harmonic_functions=embedder_freq_arti, omega0=embedder_scaler)
self.kinematic_tree_epoch = -1
self.enable_lighting = cfgs.get('enable_lighting', False)
if self.enable_lighting:
num_layers_light = cfgs.get('num_layers_light', 5)
amb_diff_min = torch.FloatTensor(cfgs.get('amb_diff_min', [0., 0.]))
amb_diff_max = torch.FloatTensor(cfgs.get('amb_diff_max', [1., 1.]))
intensity_min_max = torch.stack((amb_diff_min, amb_diff_max), dim=0)
self.netLight = light.DirectionalLight(encoder_latent_dim, num_layers_light, mlp_hidden_size, intensity_min_max=intensity_min_max)
self.cam_pos_z_offset = cfgs.get('cam_pos_z_offset', 10.)
self.crop_fov_approx = cfgs.get("crop_fov_approx", 25)
def forward_encoder(self, images, dino_features=None):
images_in = images.view(-1, *images.shape[2:]) * 2 - 1 # rescale to (-1, 1)
patch_out = patch_key = None
if self.dino_feature_input and self.cfgs.get('encoder_arch', 'simple') != 'vit':
dino_features_in = dino_features.view(-1, *dino_features.shape[2:]) * 2 - 1 # rescale to (-1, 1)
feat_out = self.netEncoder(images_in, dino_features_in) # Shape: (B, latent_dim)
elif self.cfgs.get('encoder_arch', 'simple') == 'vit':
feat_out, feat_key, patch_out, patch_key = self.netEncoder(images_in, return_patches=True)
else:
feat_out = self.netEncoder(images_in) # Shape: (B, latent_dim)
return feat_out, feat_key, patch_out, patch_key
def forward_pose(self, images, feat, patch_out, patch_key, dino_features):
if self.pose_arch == 'mlp':
pose = self.netPose(feat)
elif self.pose_arch == 'encoder':
images_in = images.view(-1, *images.shape[2:]) * 2 - 1 # rescale to (-1, 1)
if self.dino_feature_input:
dino_features_in = dino_features.view(-1, *dino_features.shape[2:]) * 2 - 1 # rescale to (-1, 1)
pose = self.netPose(images_in, dino_features_in) # Shape: (B, latent_dim)
else:
pose = self.netPose(images_in) # Shape: (B, latent_dim)
elif self.pose_arch == 'vit':
images_in = images.view(-1, *images.shape[2:]) * 2 - 1 # rescale to (-1, 1)
pose = self.netPose(images_in)
elif self.pose_arch == 'encoder_dino_patch_out':
pose = self.netPose(patch_out) # Shape: (B, latent_dim)
elif self.pose_arch == 'encoder_dino_patch_key':
pose = self.netPose(patch_key) # Shape: (B, latent_dim)
else:
raise NotImplementedError
trans_pred = pose[...,-3:].tanh() * torch.FloatTensor([self.max_trans_xy_range, self.max_trans_xy_range, self.max_trans_z_range]).to(pose.device)
if self.rot_rep == 'euler_angle':
multiplier = 1.
if self.gradually_expand_yaw:
# multiplier += (min(iteration, 20000) // 500) * 0.25
multiplier *= 1.2 ** (min(iteration, 20000) // 500) # 1.125^40 = 111.200
rot_pred = torch.cat([pose[...,:1], pose[...,1:2]*multiplier, pose[...,2:3]], -1).tanh()
rot_pred = rot_pred * torch.FloatTensor([self.max_rot_x_range, self.max_rot_y_range, self.max_rot_z_range]).to(pose.device) /180 * np.pi
elif self.rot_rep == 'quaternion':
quat_init = torch.FloatTensor([0.01,0,0,0]).to(pose.device)
rot_pred = pose[...,:4] + quat_init
rot_pred = nn.functional.normalize(rot_pred, p=2, dim=-1)
# rot_pred = torch.cat([rot_pred[...,:1].abs(), rot_pred[...,1:]], -1) # make real part non-negative
rot_pred = rot_pred * rot_pred[...,:1].sign() # make real part non-negative
elif self.rot_rep == 'lookat':
vec_forward_raw = pose[...,:3]
if self.lookat_init is not None:
vec_forward_raw = vec_forward_raw + torch.FloatTensor(self.lookat_init).to(pose.device)
if self.lookat_zeroy:
vec_forward_raw = vec_forward_raw * torch.FloatTensor([1,0,1]).to(pose.device)
vec_forward_raw = nn.functional.normalize(vec_forward_raw, p=2, dim=-1) # x right, y up, z forward
rot_pred = vec_forward_raw
elif self.rot_rep in ['quadlookat', 'octlookat']:
rots_pred = pose[..., :self.num_pose_hypos*4].view(-1, self.num_pose_hypos, 4) # (B, T, K, 4)
rots_logits = rots_pred[..., :1]
vec_forward_raw = rots_pred[..., 1:4]
xs, ys, zs = vec_forward_raw.unbind(-1)
margin = 0.
xs = nn.functional.softplus(xs, beta=np.log(2)/(0.5+margin)) - margin # initialize to 0.5
if self.rot_rep == 'octlookat':
ys = nn.functional.softplus(ys, beta=np.log(2)/(0.5+margin)) - margin # initialize to 0.5
if self.lookat_zeroy:
ys = ys * 0
zs = nn.functional.softplus(zs, beta=2*np.log(2)) # initialize to 0.5
vec_forward_raw = torch.stack([xs, ys, zs], -1)
vec_forward_raw = vec_forward_raw * self.orthant_signs.to(pose.device)
vec_forward_raw = nn.functional.normalize(vec_forward_raw, p=2, dim=-1) # x right, y up, z forward
rot_pred = torch.cat([rots_logits, vec_forward_raw], -1).view(-1, self.num_pose_hypos*4)
else:
raise NotImplementedError
pose = torch.cat([rot_pred, trans_pred], -1)
return pose
def forward_deformation(self, shape, feat=None):
original_verts = shape.v_pos
num_verts = original_verts.shape[1]
if feat is not None:
deform_feat = feat[:, None, :].repeat(1, num_verts, 1) # Shape: (B, num_verts, latent_dim)
original_verts = original_verts.repeat(len(feat),1,1)
deformation = self.netDeform(original_verts, deform_feat) * 0.1 # Shape: (B, num_verts, 3)
shape = shape.deform(deformation)
return shape, deformation
def forward_articulation(self, shape, feat, patch_feat, mvp, w2c, batch_size, num_frames, epoch):
"""
Forward propagation of articulation. For each bone, the network takes: 1) the 3D location of the bone; 2) the feature of the patch which
the bone is projected to; and 3) an encoding of the bone's index to predict the bone's rotation (represented by an Euler angle).
Args:
shape: a Mesh object, whose v_pos has batch size BxF or 1.
feat: the feature of the patches. Shape: (BxF, feat_dim, num_patches_per_axis, num_patches_per_axis)
mvp: the model-view-projection matrix. Shape: (BxF, 4, 4)
Returns:
shape: a Mesh object, whose v_pos has batch size BxF (collapsed).
articulation_angles: the predicted bone rotations. Shape: (B, F, num_bones, 3)
aux: a dictionary containing auxiliary information.
"""
verts = shape.v_pos
if len(verts) == 1:
verts = verts[None]
else:
verts = verts.view(batch_size, num_frames, *verts.shape[1:])
if self.kinematic_tree_epoch != epoch:
# if (epoch == self.articulation_epochs[0]) and (self.kinematic_tree_epoch != epoch):
# if (epoch in [self.articulation_epochs[0], self.articulation_epochs[0]+2, self.articulation_epochs[0]+4]) and (self.kinematic_tree_epoch != epoch):
attach_legs_to_body = epoch in self.attach_legs_to_body_epochs
bones, self.kinematic_tree, self.bone_aux = estimate_bones(verts.detach(), self.num_body_bones, n_legs=self.num_legs, n_leg_bones=self.num_leg_bones, body_bones_type=self.body_bones_type, compute_kinematic_chain=True, attach_legs_to_body=attach_legs_to_body)
self.kinematic_tree_epoch = epoch
else:
bones = estimate_bones(verts.detach(), self.num_body_bones, n_legs=self.num_legs, n_leg_bones=self.num_leg_bones, body_bones_type=self.body_bones_type, compute_kinematic_chain=False, aux=self.bone_aux)
bones_pos = bones # Shape: (B, F, K, 2, 3)
if batch_size > bones_pos.shape[0] or num_frames > bones_pos.shape[1]:
assert bones_pos.shape[0] == 1 and bones_pos.shape[1] == 1, "If there is a mismatch, then there must be only one canonical mesh."
bones_pos = bones_pos.repeat(batch_size, num_frames, 1, 1, 1)
num_bones = bones_pos.shape[2]
bones_pos = bones_pos.view(batch_size*num_frames, num_bones, 2, 3) # NxKx2x3
bones_mid_pos = bones_pos.mean(2) # NxKx3
bones_idx = torch.arange(num_bones).to(bones_pos.device)
bones_mid_pos_world4 = torch.cat([bones_mid_pos, torch.ones_like(bones_mid_pos[..., :1])], -1) # NxKx4
bones_mid_pos_clip4 = bones_mid_pos_world4 @ mvp.transpose(-1, -2)
bones_mid_pos_uv = bones_mid_pos_clip4[..., :2] / bones_mid_pos_clip4[..., 3:4]
bones_mid_pos_uv = bones_mid_pos_uv.detach()
bones_pos_world4 = torch.cat([bones_pos, torch.ones_like(bones_pos[..., :1])], -1) # NxKx2x4
bones_pos_cam4 = bones_pos_world4 @ w2c[:,None].transpose(-1, -2)
bones_pos_cam3 = bones_pos_cam4[..., :3] / bones_pos_cam4[..., 3:4]
bones_pos_cam3 = bones_pos_cam3 + torch.FloatTensor([0, 0, self.cam_pos_z_offset]).to(bones_pos_cam3.device).view(1, 1, 1, 3)
bones_pos_in = bones_pos_cam3.view(batch_size*num_frames, num_bones, 2*3) / self.grid_scale * 2 # (-1, 1), NxKx(2*3)
bones_idx_in = ((bones_idx[None, :, None] + 0.5) / num_bones * 2 - 1).repeat(batch_size * num_frames, 1, 1) # (-1, 1)
bones_pos_in = torch.cat([bones_mid_pos_uv, bones_pos_in, bones_idx_in], -1).detach()
if self.articulation_feature_mode == 'global':
bones_patch_features = feat[:, None].repeat(1, num_bones, 1) # (BxF, K, feat_dim)
elif self.articulation_feature_mode == 'sample':
bones_patch_features = F.grid_sample(patch_feat, bones_mid_pos_uv.view(batch_size * num_frames, 1, -1, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # (BxF, K, feat_dim)
elif self.articulation_feature_mode == 'sample+global':
bones_patch_features = F.grid_sample(patch_feat, bones_mid_pos_uv.view(batch_size * num_frames, 1, -1, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # (BxF, K, feat_dim)
bones_patch_features = torch.cat([feat[:, None].repeat(1, num_bones, 1), bones_patch_features], -1)
elif self.articulation_feature_mode == 'attention':
bones_patch_features = self.netFeatureAttn(bones_pos_in, patch_feat)
else:
raise NotImplementedError
articulation_angles = self.netArticulation(bones_patch_features, bones_pos_in).view(batch_size, num_frames, num_bones, 3) * self.articulation_multiplier
if self.static_root_bones:
root_bones = [self.num_body_bones // 2 - 1, self.num_body_bones - 1]
tmp_mask = torch.ones_like(articulation_angles)
tmp_mask[:, :, root_bones] = 0
articulation_angles = articulation_angles * tmp_mask
articulation_angles = articulation_angles.tanh()
if self.constrain_legs:
leg_bones_posx = [self.num_body_bones + i for i in range(self.num_leg_bones * self.num_legs // 2)]
leg_bones_negx = [self.num_body_bones + self.num_leg_bones * self.num_legs // 2 + i for i in range(self.num_leg_bones * self.num_legs // 2)]
tmp_mask = torch.zeros_like(articulation_angles)
tmp_mask[:, :, leg_bones_posx + leg_bones_negx, 2] = 1
articulation_angles = tmp_mask * (articulation_angles * 0.3) + (1 - tmp_mask) * articulation_angles # no twist
tmp_mask = torch.zeros_like(articulation_angles)
tmp_mask[:, :, leg_bones_posx + leg_bones_negx, 1] = 1
articulation_angles = tmp_mask * (articulation_angles * 0.3) + (1 - tmp_mask) * articulation_angles # (-0.4, 0.4), limit side bending
if epoch in self.perturb_articulation_epochs:
articulation_angles = articulation_angles + torch.randn_like(articulation_angles) * 0.1
articulation_angles = articulation_angles * self.max_arti_angle / 180 * np.pi
verts_articulated, aux = skinning(verts, bones, self.kinematic_tree, articulation_angles,
output_posed_bones=True, temperature=self.skinning_temperature)
verts_articulated = verts_articulated.view(batch_size*num_frames, *verts_articulated.shape[2:])
v_tex = shape.v_tex
if len(v_tex) != len(verts_articulated):
v_tex = v_tex.repeat(len(verts_articulated), 1, 1)
shape = mesh.make_mesh(
verts_articulated,
shape.t_pos_idx,
v_tex,
shape.t_tex_idx,
shape.material)
return shape, articulation_angles, aux
def get_camera_extrinsics_from_pose(self, pose, znear=0.1, zfar=1000.):
N = len(pose)
cam_pos_offset = torch.FloatTensor([0, 0, -self.cam_pos_z_offset]).to(pose.device)
pose_R = pose[:, :9].view(N, 3, 3).transpose(2, 1)
pose_T = pose[:, -3:] + cam_pos_offset[None, None, :]
pose_T = pose_T.view(N, 3, 1)
pose_RT = torch.cat([pose_R, pose_T], axis=2) # Nx3x4
w2c = torch.cat([pose_RT, torch.FloatTensor([0, 0, 0, 1]).repeat(N, 1, 1).to(pose.device)], axis=1) # Nx4x4
# We assume the images are perfect square.
proj = util.perspective(self.crop_fov_approx / 180 * np.pi, 1, znear, zfar)[None].to(pose.device)
mvp = torch.matmul(proj, w2c)
campos = -torch.matmul(pose_R.transpose(2, 1), pose_T).view(N, 3)
return mvp, w2c, campos
def forward(self, images=None, prior_shape=None, epoch=None, dino_features=None, dino_clusters=None, total_iter=None, is_training=True):
batch_size, num_frames = images.shape[:2]
if self.enable_encoder:
feat_out, feat_key, patch_out, patch_key = self.forward_encoder(images, dino_features)
else:
feat_out = feat_key = patch_out = patch_key = None
shape = prior_shape
texture = self.netTexture
multi_hypothesis_aux = {}
if self.enable_pose:
poses_raw = self.forward_pose(images, feat_out, patch_out, patch_key, dino_features)
pose_raw, pose, rot_idx, rot_prob, rot_logit, rots_probs, rand_pose_flag = sample_pose_hypothesis_from_quad_prediction(poses_raw, total_iter, batch_size, num_frames, rot_temp_scalar=self.rot_temp_scalar, num_hypos=self.num_pose_hypos, naive_probs_iter=self.naive_probs_iter, best_pose_start_iter=self.best_pose_start_iter, random_sample=is_training)
multi_hypothesis_aux['rot_idx'] = rot_idx
multi_hypothesis_aux['rot_prob'] = rot_prob
multi_hypothesis_aux['rot_logit'] = rot_logit
multi_hypothesis_aux['rots_probs'] = rots_probs
multi_hypothesis_aux['rand_pose_flag'] = rand_pose_flag
else:
raise NotImplementedError
mvp, w2c, campos = self.get_camera_extrinsics_from_pose(pose)
deformation = None
if self.enable_deform and epoch in self.deform_epochs:
shape, deformation = self.forward_deformation(shape, feat_key)
arti_params, articulation_aux = None, {}
if self.enable_articulation and epoch in self.articulation_epochs:
shape, arti_params, articulation_aux = self.forward_articulation(shape, feat_key, patch_key, mvp, w2c, batch_size, num_frames, epoch)
if self.enable_lighting:
light = self.netLight
else:
light = None
aux = articulation_aux
aux.update(multi_hypothesis_aux)
return shape, pose_raw, pose, mvp, w2c, campos, texture, feat_out, deformation, arti_params, light, aux
class Unsup3D:
def __init__(self, cfgs):
self.cfgs = cfgs
self.device = cfgs.get('device', 'cpu')
self.in_image_size = cfgs.get('in_image_size', 128)
self.out_image_size = cfgs.get('out_image_size', 128)
self.num_epochs = cfgs.get('num_epochs', 10)
self.lr = cfgs.get('lr', 1e-4)
self.use_scheduler = cfgs.get('use_scheduler', False)
if self.use_scheduler:
scheduler_milestone = cfgs.get('scheduler_milestone', [1,2,3,4,5])
scheduler_gamma = cfgs.get('scheduler_gamma', 0.5)
self.make_scheduler = lambda optim: torch.optim.lr_scheduler.MultiStepLR(optim, milestones=scheduler_milestone, gamma=scheduler_gamma)
self.cam_pos_z_offset = cfgs.get('cam_pos_z_offset', 10.)
self.full_size_h = cfgs.get('full_size_h', 1080)
self.full_size_w = cfgs.get('full_size_w', 1920)
# self.fov_w = cfgs.get('fov_w', 60)
# self.fov_h = np.arctan(np.tan(self.fov_w /2 /180*np.pi) / self.full_size_w * self.full_size_h) *2 /np.pi*180 # 36
self.crop_fov_approx = cfgs.get("crop_fov_approx", 25)
self.mesh_regularization_mode = cfgs.get('mesh_regularization_mode', 'seq')
self.enable_prior = cfgs.get('enable_prior', False)
if self.enable_prior:
self.netPrior = PriorPredictor(self.cfgs)
self.prior_lr = cfgs.get('prior_lr', self.lr)
self.prior_weight_decay = cfgs.get('prior_weight_decay', 0.)
self.prior_only_epochs = cfgs.get('prior_only_epochs', 0)
self.netInstance = InstancePredictor(self.cfgs, tet_bbox=self.netPrior.netShape.getAABB())
self.perturb_sdf = cfgs.get('perturb_sdf', False)
self.blur_mask = cfgs.get('blur_mask', False)
self.blur_mask_iter = cfgs.get('blur_mask_iter', 1)
self.seqshape_epochs = np.arange(*cfgs.get('seqshape_epochs', [0, self.num_epochs]))
self.avg_texture_epochs = np.arange(*cfgs.get('avg_texture_epochs', [0, 0]))
self.swap_texture_epochs = np.arange(*cfgs.get('swap_texture_epochs', [0, 0]))
self.swap_priorshape_epochs = np.arange(*cfgs.get('swap_priorshape_epochs', [0, 0]))
self.avg_seqshape_epochs = np.arange(*cfgs.get('avg_seqshape_epochs', [0, 0]))
self.swap_seqshape_epochs = np.arange(*cfgs.get('swap_seqshape_epochs', [0, 0]))
self.pose_epochs = np.arange(*cfgs.get('pose_epochs', [0, 0]))
self.pose_iters = cfgs.get('pose_iters', 0)
self.deform_type = cfgs.get('deform_type', None)
self.mesh_reg_decay_epoch = cfgs.get('mesh_reg_decay_epoch', 0)
self.sdf_reg_decay_start_iter = cfgs.get('sdf_reg_decay_start_iter', 0)
self.mesh_reg_decay_rate = cfgs.get('mesh_reg_decay_rate', 1)
self.texture_epochs = np.arange(*cfgs.get('texture_epochs', [0, self.num_epochs]))
self.zflip_epochs = np.arange(*cfgs.get('zflip_epochs', [0, self.num_epochs]))
self.lookat_zflip_loss_epochs = np.arange(*cfgs.get('lookat_zflip_loss_epochs', [0, self.num_epochs]))
self.lookat_zflip_no_other_losses = cfgs.get('lookat_zflip_no_other_losses', False)
self.flow_loss_epochs = np.arange(*cfgs.get('flow_loss_epochs', [0, self.num_epochs]))
self.sdf_inflate_reg_loss_epochs = np.arange(*cfgs.get('sdf_inflate_reg_loss_epochs', [0, self.num_epochs]))
self.arti_reg_loss_epochs = np.arange(*cfgs.get('arti_reg_loss_epochs', [0, self.num_epochs]))
self.background_mode = cfgs.get('background_mode', 'background')
self.shape_prior_type = cfgs.get('shape_prior_type', 'deform')
self.backward_prior = cfgs.get('backward_prior', True)
self.resume_prior_optim = cfgs.get('resume_prior_optim', True)
self.dmtet_grid_smaller_epoch = cfgs.get('dmtet_grid_smaller_epoch', 0)
self.dmtet_grid_smaller = cfgs.get('dmtet_grid_smaller', 128)
self.dmtet_grid = cfgs.get('dmtet_grid', 256)
self.pose_xflip_recon_epochs = np.arange(*cfgs.get('pose_xflip_recon_epochs', [0, 0]))
self.rot_rand_quad_epochs = np.arange(*cfgs.get('rot_rand_quad_epochs', [0, 0]))
self.rot_all_quad_epochs = np.arange(*cfgs.get('rot_all_quad_epochs', [0, 0]))
## perceptual loss
if cfgs.get('perceptual_loss_weight', 0.) > 0:
self.perceptual_loss_use_lin = cfgs.get('perceptual_loss_use_lin', True)
self.perceptual_loss = lpips.LPIPS(net='vgg', lpips=self.perceptual_loss_use_lin)
self.glctx = dr.RasterizeGLContext()
self.render_flow = self.cfgs.get('flow_loss_weight', 0.) > 0.
self.extra_renders = cfgs.get('extra_renders', [])
self.renderer_spp = cfgs.get('renderer_spp', 1)
self.dino_feature_recon_dim = cfgs.get('dino_feature_recon_dim', 64)
self.total_loss = 0.
self.all_scores = torch.Tensor()
self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
@staticmethod
def get_data_loaders(cfgs, dataset, in_image_size=256, out_image_size=256, batch_size=64, num_workers=4, run_train=False, run_test=False, train_data_dir=None, val_data_dir=None, test_data_dir=None):
train_loader = val_loader = test_loader = None
color_jitter_train = cfgs.get('color_jitter_train', None)
color_jitter_val = cfgs.get('color_jitter_val', None)
random_flip_train = cfgs.get('random_flip_train', False)
## video dataset
if dataset == 'video':
data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
skip_beginning = cfgs.get('skip_beginning', 4)
skip_end = cfgs.get('skip_end', 4)
num_sample_frames = cfgs.get('num_sample_frames', 2)
min_seq_len = cfgs.get('min_seq_len', 10)
max_seq_len = cfgs.get('max_seq_len', 10)
debug_seq = cfgs.get('debug_seq', False)
random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
load_background = cfgs.get('background_mode', 'none') == 'background'
rgb_suffix = cfgs.get('rgb_suffix', '.png')
load_dino_feature = cfgs.get('load_dino_feature', False)
load_dino_cluster = cfgs.get('load_dino_cluster', False)
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
get_loader = lambda **kwargs: get_sequence_loader(
mode=data_loader_mode,
batch_size=batch_size,
num_workers=num_workers,
in_image_size=in_image_size,
out_image_size=out_image_size,
debug_seq=debug_seq,
skip_beginning=skip_beginning,
skip_end=skip_end,
num_sample_frames=num_sample_frames,
min_seq_len=min_seq_len,
max_seq_len=max_seq_len,
load_background=load_background,
rgb_suffix=rgb_suffix,
load_dino_feature=load_dino_feature,
load_dino_cluster=load_dino_cluster,
dino_feature_dim=dino_feature_dim,
**kwargs)
if run_train:
assert osp.isdir(train_data_dir), f"Training data directory does not exist: {train_data_dir}"
print(f"Loading training data from {train_data_dir}")
train_loader = get_loader(data_dir=train_data_dir, is_validation=False, random_sample=random_sample_train_frames, shuffle=shuffle_train_seqs, dense_sample=True, color_jitter=color_jitter_train, random_flip=random_flip_train)
if val_data_dir is not None:
assert osp.isdir(val_data_dir), f"Validation data directory does not exist: {val_data_dir}"
print(f"Loading validation data from {val_data_dir}")
val_loader = get_loader(data_dir=val_data_dir, is_validation=True, random_sample=random_sample_val_frames, shuffle=False, dense_sample=False, color_jitter=color_jitter_val, random_flip=False)
if run_test:
assert osp.isdir(test_data_dir), f"Testing data directory does not exist: {test_data_dir}"
print(f"Loading testing data from {test_data_dir}")
test_loader = get_loader(data_dir=test_data_dir, is_validation=True, dense_sample=False, color_jitter=None, random_flip=False)
## CUB dataset
elif dataset == 'cub':
get_loader = lambda **kwargs: get_cub_loader(
batch_size=batch_size,
num_workers=num_workers,
image_size=in_image_size,
**kwargs)
if run_train:
assert osp.isdir(train_data_dir), f"Training data directory does not exist: {train_data_dir}"
print(f"Loading training data from {train_data_dir}")
train_loader = get_loader(data_dir=train_data_dir, split='train', is_validation=False)
val_loader = get_loader(data_dir=val_data_dir, split='val', is_validation=True)
if run_test:
assert osp.isdir(test_data_dir), f"Testing data directory does not exist: {test_data_dir}"
print(f"Loading testing data from {test_data_dir}")
test_loader = get_loader(data_dir=test_data_dir, split='test', is_validation=True)
## other datasets
else:
get_loader = lambda **kwargs: get_image_loader(
batch_size=batch_size,
num_workers=num_workers,
image_size=in_image_size,
**kwargs)
if run_train:
assert osp.isdir(train_data_dir), f"Training data directory does not exist: {train_data_dir}"
print(f"Loading training data from {train_data_dir}")
train_loader = get_loader(data_dir=train_data_dir, is_validation=False, color_jitter=color_jitter_train)
if val_data_dir is not None:
assert osp.isdir(val_data_dir), f"Validation data directory does not exist: {val_data_dir}"
print(f"Loading validation data from {val_data_dir}")
val_loader = get_loader(data_dir=val_data_dir, is_validation=True, color_jitter=color_jitter_val)
if run_test:
assert osp.isdir(test_data_dir), f"Testing data directory does not exist: {test_data_dir}"
print(f"Loading testing data from {test_data_dir}")
test_loader = get_loader(data_dir=test_data_dir, is_validation=True, color_jitter=None)
return train_loader, val_loader, test_loader
def load_model_state(self, cp):
self.netInstance.load_state_dict(cp["netInstance"])
if self.enable_prior:
self.netPrior.load_state_dict(cp["netPrior"])
def load_optimizer_state(self, cp):
self.optimizerInstance.load_state_dict(cp["optimizerInstance"])
if self.use_scheduler:
if 'schedulerInstance' in cp:
self.schedulerInstance.load_state_dict(cp["schedulerInstance"])
if self.enable_prior and self.resume_prior_optim:
self.optimizerPrior.load_state_dict(cp["optimizerPrior"])
if self.use_scheduler:
if 'schedulerPrior' in cp:
self.schedulerPrior.load_state_dict(cp["schedulerPrior"])
def get_model_state(self):
state = {"netInstance": self.netInstance.state_dict()}
if self.enable_prior:
state["netPrior"] = self.netPrior.state_dict()
return state
def get_optimizer_state(self):
state = {"optimizerInstance": self.optimizerInstance.state_dict()}
if self.use_scheduler:
state["schedulerInstance"] = self.schedulerInstance.state_dict()
if self.enable_prior:
state["optimizerPrior"] = self.optimizerPrior.state_dict()
if self.use_scheduler:
state["schedulerPrior"] = self.schedulerPrior.state_dict()
return state
def to(self, device):
self.device = device
self.netInstance.to(device)
if self.enable_prior:
self.netPrior.to(device)
if hasattr(self, 'perceptual_loss'):
self.perceptual_loss.to(device)
def set_train(self):
self.netInstance.train()
if self.enable_prior:
self.netPrior.train()
def set_eval(self):
self.netInstance.eval()
if self.enable_prior:
self.netPrior.eval()
def reset_optimizers(self):
print("Resetting optimizers...")
self.optimizerInstance = get_optimizer(self.netInstance, self.lr)
if self.use_scheduler:
self.schedulerInstance = self.make_scheduler(self.optimizerInstance)
if self.enable_prior:
self.optimizerPrior = get_optimizer(self.netPrior, lr=self.prior_lr, weight_decay=self.prior_weight_decay)
if self.use_scheduler:
self.schedulerPrior = self.make_scheduler(self.optimizerPrior)
def backward(self):
self.optimizerInstance.zero_grad()
if self.backward_prior:
self.optimizerPrior.zero_grad()
self.total_loss.backward()
self.optimizerInstance.step()
if self.backward_prior:
self.optimizerPrior.step()
self.total_loss = 0.
def scheduler_step(self):
if self.use_scheduler:
self.schedulerInstance.step()
if self.enable_prior:
self.schedulerPrior.step()
def zflip_pose(self, pose):
if self.rot_rep == 'lookat':
vec_forward = pose[:,:,6:9]
vec_forward = vec_forward * torch.FloatTensor([1,1,-1]).view(1,1,3).to(vec_forward.device)
up = torch.FloatTensor([0,1,0]).to(pose.device).view(1,1,3)
vec_right = up.expand_as(vec_forward).cross(vec_forward, dim=-1)
vec_right = nn.functional.normalize(vec_right, p=2, dim=-1)
vec_up = vec_forward.cross(vec_right, dim=-1)
vec_up = nn.functional.normalize(vec_up, p=2, dim=-1)
rot_mat = torch.stack([vec_right, vec_up, vec_forward], 2)
rot_pred = rot_mat.reshape(*pose.shape[:-1], -1)
pose_zflip = torch.cat([rot_pred, pose[:,:,9:]], -1)
else:
raise NotImplementedError
return pose_zflip
def render(self, shape, texture, mvp, w2c, campos, resolution, background='none', im_features=None, light=None, prior_shape=None, render_flow=True, dino_pred=None, render_mode='diffuse', two_sided_shading=True, num_frames=None, spp=1):
h, w = resolution
N = len(mvp)
if background in ['none', 'black']:
bg_image = torch.zeros((N, h, w, 3), device=mvp.device)
elif background == 'white':
bg_image = torch.ones((N, h, w, 3), device=mvp.device)
elif background == 'checkerboard':
bg_image = torch.FloatTensor(util.checkerboard((h, w), 8), device=self.device).repeat(N, 1, 1, 1) # NxHxWxC
else:
raise NotImplementedError
frame_rendered = render.render_mesh(
self.glctx,
shape,
mtx_in=mvp,
w2c=w2c,
view_pos=campos,
material=texture,
lgt=light,
resolution=resolution,
spp=spp,
msaa=True,
background=bg_image,
bsdf=render_mode,
feat=im_features,
prior_mesh=prior_shape,
two_sided_shading=two_sided_shading,
render_flow=render_flow,
dino_pred=dino_pred,
num_frames=num_frames)
shaded = frame_rendered['shaded'].permute(0, 3, 1, 2)
image_pred = shaded[:, :3, :, :]
mask_pred = shaded[:, 3, :, :]
albedo = frame_rendered['kd'].permute(0, 3, 1, 2)[:, :3, :, :]
if 'shading' in frame_rendered:
shading = frame_rendered['shading'].permute(0, 3, 1, 2)[:, :1, :, :]
else:
shading = None
if render_flow:
flow_pred = frame_rendered['flow']
flow_pred = flow_pred.permute(0, 3, 1, 2)[:, :2, :, :]
else:
flow_pred = None
if dino_pred is not None:
dino_feat_im_pred = frame_rendered['dino_feat_im_pred']
dino_feat_im_pred = dino_feat_im_pred.permute(0, 3, 1, 2)[:, :-1]
else:
dino_feat_im_pred = None
return image_pred, mask_pred, flow_pred, dino_feat_im_pred, albedo, shading
def compute_reconstruction_losses(self, image_pred, image_gt, mask_pred, mask_gt, mask_dt, mask_valid, flow_pred, flow_gt, dino_feat_im_gt, dino_feat_im_pred, background_mode='none', reduce=False):
losses = {}
batch_size, num_frames, _, h, w = image_pred.shape # BxFxCxHxW
# image_loss = (image_pred - image_gt) ** 2
image_loss = (image_pred - image_gt).abs()
## silhouette loss
mask_pred_valid = mask_pred * mask_valid
# mask_pred_valid = mask_pred
# losses["silhouette_loss"] = ((mask_pred - mask_gt) ** 2).mean()
# mask_loss_mask = (image_loss.mean(2).detach() > 0.05).float()
mask_loss = (mask_pred_valid - mask_gt) ** 2
# mask_loss = nn.functional.mse_loss(mask_pred, mask_gt)
# num_mask_pixels = mask_loss_mask.reshape(batch_size*num_frames, -1).sum(1).clamp(min=1)
# losses["silhouette_loss"] = (mask_loss.reshape(batch_size*num_frames, -1).sum(1) / num_mask_pixels).mean()
losses['silhouette_loss'] = mask_loss.view(batch_size, num_frames, -1).mean(2)
losses['silhouette_dt_loss'] = (mask_pred * mask_dt[:,:,1]).view(batch_size, num_frames, -1).mean(2)
losses['silhouette_inv_dt_loss'] = ((1-mask_pred) * mask_dt[:,:,0]).view(batch_size, num_frames, -1).mean(2)
mask_pred_binary = (mask_pred_valid > 0.).float().detach()
mask_both_binary = (mask_pred_binary * mask_gt).view(batch_size*num_frames, 1, *mask_pred.shape[2:])
mask_both_binary = (nn.functional.avg_pool2d(mask_both_binary, 3, stride=1, padding=1).view(batch_size, num_frames, *mask_pred.shape[2:]) > 0.99).float().detach() # erode by 1 pixel
## reconstruction loss
# image_loss_mask = (mask_pred*mask_gt).unsqueeze(2).expand_as(image_gt)
# image_loss = image_loss * image_loss_mask
# num_mask_pixels = image_loss_mask.reshape(batch_size*num_frames, -1).sum(1).clamp(min=1)
# losses["rgb_loss"] = (image_loss.reshape(batch_size*num_frames, -1).sum(1) / num_mask_pixels).mean()
if background_mode in ['background', 'input']:
pass
else:
image_loss = image_loss * mask_both_binary.unsqueeze(2)
losses['rgb_loss'] = image_loss.reshape(batch_size, num_frames, -1).mean(2)
if self.cfgs.get('perceptual_loss_weight', 0.) > 0:
if background_mode in ['background', 'input']:
perc_image_pred = image_pred
perc_image_gt = image_gt
else:
perc_image_pred = image_pred * mask_pred_binary.unsqueeze(2) + 0.5 * (1-mask_pred_binary.unsqueeze(2))
perc_image_gt = image_gt * mask_pred_binary.unsqueeze(2) + 0.5 * (1-mask_pred_binary.unsqueeze(2))
losses['perceptual_loss'] = self.perceptual_loss(perc_image_pred.view(-1, *image_pred.shape[2:]) *2-1, perc_image_gt.view(-1, *image_gt.shape[2:]) *2-1).view(batch_size, num_frames)
## flow loss - between first and second frame
if flow_pred is not None:
flow_loss = (flow_pred - flow_gt).abs()
flow_loss_mask = mask_both_binary[:,:-1].unsqueeze(2).expand_as(flow_gt).detach()
## ignore frames where GT flow is too large (likely inaccurate)
large_flow = (flow_gt.abs() > 0.5).float() * flow_loss_mask
large_flow = (large_flow.view(batch_size, num_frames-1, -1).sum(2) > 0).float()
self.large_flow = large_flow
flow_loss = flow_loss * flow_loss_mask * (1 - large_flow[:,:,None,None,None])
num_mask_pixels = flow_loss_mask.reshape(batch_size, num_frames-1, -1).sum(2).clamp(min=1)
losses['flow_loss'] = (flow_loss.reshape(batch_size, num_frames-1, -1).sum(2) / num_mask_pixels)
# losses["flow_loss"] = flow_loss.mean()
if dino_feat_im_pred is not None:
dino_feat_loss = (dino_feat_im_pred - dino_feat_im_gt) ** 2
dino_feat_loss = dino_feat_loss * mask_both_binary.unsqueeze(2)
losses['dino_feat_im_loss'] = dino_feat_loss.reshape(batch_size, num_frames, -1).mean(2)
if reduce:
for k, v in losses.item():
losses[k] = v.mean()
return losses
def compute_pose_xflip_reg_loss(self, input_image, dino_feat_im, pose_raw, input_image_xflip_flag=None):
image_xflip = input_image.flip(4)
if dino_feat_im is not None:
dino_feat_im_xflip = dino_feat_im.flip(4)
else:
dino_feat_im_xflip = None
feat_xflip, _ = self.netInstance.forward_encoder(image_xflip, dino_feat_im_xflip)
batch_size, num_frames = input_image.shape[:2]
pose_xflip_raw = self.netInstance.forward_pose(image_xflip, feat_xflip, dino_feat_im_xflip)
if input_image_xflip_flag is not None:
pose_xflip_raw_xflip = pose_xflip_raw * torch.FloatTensor([-1,1,1,-1,1,1]).to(pose_raw.device) # forward x, trans x
pose_xflip_raw = pose_xflip_raw * (1 - input_image_xflip_flag.view(batch_size * num_frames, 1)) + pose_xflip_raw_xflip * input_image_xflip_flag.view(batch_size * num_frames, 1)
rot_rep = self.netInstance.rot_rep
if rot_rep == 'euler_angle' or rot_rep == 'soft_calss':
pose_xflip_xflip = pose_xflip * torch.FloatTensor([1,-1,-1,-1,1,1]).to(pose_xflip.device) # rot y+z, trans x
pose_xflip_reg_loss = ((pose_xflip_xflip - pose) ** 2.).mean()
elif rot_rep == 'quaternion':
rot_euler = pytorch3d.transforms.matrix_to_euler_angles(pytorch3d.transforms.quaternion_to_matrix(pose[...,:4]), convention='XYZ')
pose_euler = torch.cat([rot_euler, pose[...,4:]], -1)
rot_xflip_euler = pytorch3d.transforms.matrix_to_euler_angles(pytorch3d.transforms.quaternion_to_matrix(pose_xflip[...,:4]), convention='XYZ')
pose_xflip_euler = torch.cat([rot_xflip_euler, pose_xflip[...,4:]], -1)
pose_xflip_euler_xflip = pose_xflip_euler * torch.FloatTensor([1,-1,-1,-1,1,1]).to(pose_xflip.device) # rot y+z, trans x
pose_xflip_reg_loss = ((pose_xflip_euler_xflip - pose_euler) ** 2.).mean()
elif rot_rep == 'lookat':
pose_xflip_raw_xflip = pose_xflip_raw * torch.FloatTensor([-1,1,1,-1,1,1]).to(pose_raw.device) # forward x, trans x
pose_xflip_reg_loss = ((pose_xflip_raw_xflip - pose_raw)[...,0] ** 2.) # compute x only
# if epoch >= self.nolookat_zflip_loss_epochs and self.lookat_zflip_no_other_losses:
# pose_xflip_reg_loss = pose_xflip_reg_loss.mean(1) * is_pose_1_better
pose_xflip_reg_loss = pose_xflip_reg_loss.mean()
return pose_xflip_reg_loss, pose_xflip_raw
def compute_edge_length_reg_loss(self, mesh, prior_mesh):
prior_edge_lengths = get_edge_length(prior_mesh.v_pos, prior_mesh.t_pos_idx)
max_length = prior_edge_lengths.max().detach() *1.1
edge_lengths = get_edge_length(mesh.v_pos, mesh.t_pos_idx)
mesh_edge_length_loss = ((edge_lengths - max_length).clamp(min=0)**2).mean()
return mesh_edge_length_loss, edge_lengths
def compute_regularizers(self, mesh, prior_mesh, input_image, dino_feat_im, pose_raw, input_image_xflip_flag=None, arti_params=None, deformation=None):
losses = {}
aux = {}
if self.enable_prior:
losses.update(self.netPrior.netShape.get_sdf_reg_loss())
if self.cfgs.get('pose_xflip_reg_loss_weight', 0.) > 0:
losses["pose_xflip_reg_loss"], aux['pose_xflip_raw'] = self.compute_pose_xflip_reg_loss(input_image, dino_feat_im, pose_raw, input_image_xflip_flag)
b, f = input_image.shape[:2]
if b >= 2:
vec_forward = pose_raw[..., :3]
losses['pose_entropy_loss'] = (vec_forward[:b//2] * vec_forward[b//2:(b//2)*2]).sum(-1).mean()
else:
losses['pose_entropy_loss'] = 0.
losses['mesh_normal_consistency_loss'] = normal_consistency(mesh.v_pos, mesh.t_pos_idx)
losses['mesh_edge_length_loss'], aux['edge_lengths'] = self.compute_edge_length_reg_loss(mesh, prior_mesh)
if arti_params is not None:
losses['arti_reg_loss'] = (arti_params ** 2).mean()
if deformation is not None:
losses['deformation_reg_loss'] = (deformation ** 2).mean()
# losses['deformation_reg_loss'] = deformation.abs().mean()
return losses, aux
def forward(self, batch, epoch, iter, is_train=True, viz_logger=None, total_iter=None, save_results=False, save_dir=None, which_data='', logger_prefix='', is_training=True):
batch = [x.to(self.device) if x is not None else None for x in batch]
input_image, mask_gt, mask_dt, mask_valid, flow_gt, bbox, bg_image, dino_feat_im, dino_cluster_im, seq_idx, frame_idx = batch
batch_size, num_frames, _, h0, w0 = input_image.shape # BxFxCxHxW
h = w = self.out_image_size
def collapseF(x):
return None if x is None else x.view(batch_size * num_frames, *x.shape[2:])
def expandF(x):
return None if x is None else x.view(batch_size, num_frames, *x.shape[1:])
if flow_gt.dim() == 2: # dummy tensor for not loading flow
flow_gt = None
if dino_feat_im.dim() == 2: # dummy tensor for not loading dino features
dino_feat_im = None
dino_feat_im_gt = None
else:
dino_feat_im_gt = expandF(torch.nn.functional.interpolate(collapseF(dino_feat_im), size=[h, w], mode="bilinear"))[:, :, :self.dino_feature_recon_dim]
if dino_cluster_im.dim() == 2: # dummy tensor for not loading dino clusters
dino_cluster_im = None
dino_cluster_im_gt = None
else:
dino_cluster_im_gt = expandF(torch.nn.functional.interpolate(collapseF(dino_cluster_im), size=[h, w], mode="nearest"))
seq_idx = seq_idx.squeeze(1)
# seq_idx = seq_idx * 0 # single sequnce model
frame_id, crop_x0, crop_y0, crop_w, crop_h, full_w, full_h, sharpness = bbox.unbind(2) # BxFx7
bbox = torch.stack([crop_x0, crop_y0, crop_w, crop_h], 2)
mask_gt = (mask_gt[:, :, 0, :, :] > 0.9).float() # BxFxHxW
mask_dt = mask_dt / self.in_image_size
if which_data != 'video':
flow_gt = None
aux_viz = {}
## GT
image_gt = input_image
if self.out_image_size != self.in_image_size:
image_gt = expandF(torch.nn.functional.interpolate(collapseF(image_gt), size=[h, w], mode='bilinear'))
if flow_gt is not None:
flow_gt = torch.nn.functional.interpolate(flow_gt.view(batch_size*(num_frames-1), 2, h0, w0), size=[h, w], mode="bilinear").view(batch_size, num_frames-1, 2, h, w)
self.train_pose_only = False
if epoch in self.pose_epochs:
if (total_iter // self.pose_iters) % 2 == 0:
self.train_pose_only = True
## flip input and pose
if epoch in self.pose_xflip_recon_epochs:
input_image_xflip = input_image.flip(-1)
input_image_xflip_flag = torch.randint(0, 2, (batch_size, num_frames), device=input_image.device)
input_image = input_image * (1 - input_image_xflip_flag[:,:,None,None,None]) + input_image_xflip * input_image_xflip_flag[:,:,None,None,None]
else:
input_image_xflip_flag = None
## 1st pose hypothesis with original predictions
# ==============================================================================================
# Predict prior mesh.
# ==============================================================================================
if self.enable_prior:
if epoch < self.dmtet_grid_smaller_epoch:
if self.netPrior.netShape.grid_res != self.dmtet_grid_smaller:
self.netPrior.netShape.load_tets(self.dmtet_grid_smaller)
else:
if self.netPrior.netShape.grid_res != self.dmtet_grid:
self.netPrior.netShape.load_tets(self.dmtet_grid)
perturb_sdf = self.perturb_sdf if is_train else False
prior_shape, dino_pred = self.netPrior(perturb_sdf=perturb_sdf, total_iter=total_iter, is_training=is_training)
else:
prior_shape = None
raise NotImplementedError
shape, pose_raw, pose, mvp, w2c, campos, texture, im_features, deformation, arti_params, light, forward_aux = self.netInstance(input_image, prior_shape, epoch, dino_feat_im, dino_cluster_im, total_iter, is_training=is_training) # frame dim collapsed N=(B*F)
rot_logit = forward_aux['rot_logit']
rot_idx = forward_aux['rot_idx']
rot_prob = forward_aux['rot_prob']
aux_viz.update(forward_aux)
if self.train_pose_only:
safe_detach = lambda x: x.detach() if x is not None else None
prior_shape = safe_detach(prior_shape)
shape = safe_detach(shape)
im_features = safe_detach(im_features)
arti_params = safe_detach(arti_params)
deformation = safe_detach(deformation)
set_requires_grad(texture, False)
set_requires_grad(light, False)
set_requires_grad(dino_pred, False)
else:
set_requires_grad(texture, True)
set_requires_grad(light, True)
set_requires_grad(dino_pred, True)
render_flow = self.render_flow and num_frames > 1
image_pred, mask_pred, flow_pred, dino_feat_im_pred, albedo, shading = self.render(shape, texture, mvp, w2c, campos, (h, w), background=self.background_mode, im_features=im_features, light=light, prior_shape=prior_shape, render_flow=render_flow, dino_pred=dino_pred, num_frames=num_frames, spp=self.renderer_spp)
image_pred, mask_pred, flow_pred, dino_feat_im_pred = map(expandF, (image_pred, mask_pred, flow_pred, dino_feat_im_pred))
if flow_pred is not None:
flow_pred = flow_pred[:, :-1] # Bx(F-1)x2xHxW
if self.blur_mask:
sigma = max(0.5, 3 * (1 - total_iter / self.blur_mask_iter))
if sigma > 0.5:
mask_gt = util.blur_image(mask_gt, kernel_size=9, sigma=sigma, mode='gaussian')
# mask_pred = util.blur_image(mask_pred, kernel_size=7, mode='average')
losses = self.compute_reconstruction_losses(image_pred, image_gt, mask_pred, mask_gt, mask_dt, mask_valid, flow_pred, flow_gt, dino_feat_im_gt, dino_feat_im_pred, background_mode=self.background_mode, reduce=False)
## TODO: assume flow loss is not used
logit_loss_target = torch.zeros_like(expandF(rot_logit))
final_losses = {}
for name, loss in losses.items():
loss_weight_logit = self.cfgs.get(f"{name}_weight", 0.)
# if (name in ['flow_loss'] and epoch not in self.flow_loss_epochs) or (name in ['rgb_loss', 'perceptual_loss'] and epoch not in self.texture_epochs):
# if name in ['flow_loss', 'rgb_loss', 'perceptual_loss']:
# loss_weight_logit = 0.
if name in ['sdf_bce_reg_loss', 'sdf_gradient_reg_loss', 'sdf_inflate_reg_loss']:
if total_iter >= self.sdf_reg_decay_start_iter:
decay_rate = max(0, 1 - (total_iter-self.sdf_reg_decay_start_iter) / 10000)
loss_weight_logit = max(loss_weight_logit * decay_rate, self.cfgs.get(f"{name}_min_weight", 0.))
if name in ['dino_feat_im_loss']:
loss_weight_logit = loss_weight_logit * self.cfgs.get("logit_loss_dino_feat_im_loss_multiplier", 1.)
if loss_weight_logit > 0:
logit_loss_target += loss * loss_weight_logit
if self.netInstance.rot_rep in ['quadlookat', 'octlookat']:
loss = loss * rot_prob.detach().view(batch_size, num_frames)[:, :loss.shape[1]] *self.netInstance.num_pose_hypos
if name == 'flow_loss' and num_frames > 1:
ri = rot_idx.view(batch_size, num_frames)
same_rot_idx = (ri[:, 1:] == ri[:, :-1]).float()
loss = loss * same_rot_idx
final_losses[name] = loss.mean()
final_losses['logit_loss'] = ((expandF(rot_logit) - logit_loss_target.detach())**2.).mean()
## regularizers
regularizers, aux = self.compute_regularizers(shape, prior_shape, input_image, dino_feat_im, pose_raw, input_image_xflip_flag, arti_params, deformation)
final_losses.update(regularizers)
aux_viz.update(aux)
total_loss = 0
for name, loss in final_losses.items():
loss_weight = self.cfgs.get(f"{name}_weight", 0.)
if loss_weight <= 0:
continue
if self.train_pose_only:
if name not in ['silhouette_loss', 'silhouette_dt_loss', 'silhouette_inv_dt_loss', 'flow_loss', 'pose_xflip_reg_loss', 'lookat_zflip_loss', 'dino_feat_im_loss']:
continue
if epoch not in self.flow_loss_epochs:
if name in ['flow_loss']:
continue
if epoch not in self.texture_epochs:
if name in ['rgb_loss', 'perceptual_loss']:
continue
if epoch not in self.lookat_zflip_loss_epochs:
if name in ['lookat_zflip_loss']:
continue
if name in ['mesh_laplacian_smoothing_loss', 'mesh_normal_consistency_loss']:
if total_iter < self.cfgs.get('mesh_reg_start_iter', 0):
continue
if epoch >= self.mesh_reg_decay_epoch:
decay_rate = self.mesh_reg_decay_rate ** (epoch - self.mesh_reg_decay_epoch)
loss_weight = max(loss_weight * decay_rate, self.cfgs.get(f"{name}_min_weight", 0.))
if epoch not in self.sdf_inflate_reg_loss_epochs:
if name in ['sdf_inflate_reg_loss']:
continue
if epoch not in self.arti_reg_loss_epochs:
if name in ['arti_reg_loss']:
continue
if name in ['sdf_bce_reg_loss', 'sdf_gradient_reg_loss', 'sdf_inflate_reg_loss']:
if total_iter >= self.sdf_reg_decay_start_iter:
decay_rate = max(0, 1 - (total_iter-self.sdf_reg_decay_start_iter) / 10000)
loss_weight = max(loss_weight * decay_rate, self.cfgs.get(f"{name}_min_weight", 0.))
total_loss += loss * loss_weight
self.total_loss += total_loss # reset to 0 in backward step
if torch.isnan(self.total_loss):
print("NaN in loss...")
import ipdb; ipdb.set_trace()
final_losses['logit_loss_target'] = logit_loss_target.mean()
metrics = {'loss': total_loss, **final_losses}
## log visuals
if viz_logger is not None:
b0 = max(min(batch_size, 16//num_frames), 1)
viz_logger.add_image(logger_prefix+'image/image_gt', misc.image_grid(image_gt.detach().cpu()[:b0,:].reshape(-1,*input_image.shape[2:]).clamp(0,1)), total_iter)
viz_logger.add_image(logger_prefix+'image/image_pred', misc.image_grid(image_pred.detach().cpu()[:b0,:].reshape(-1,*image_pred.shape[2:]).clamp(0,1)), total_iter)
# viz_logger.add_image(logger_prefix+'image/flow_loss_mask', misc.image_grid(flow_loss_mask[:b0,:,:1].reshape(-1,1,*flow_loss_mask.shape[3:]).repeat(1,3,1,1).clamp(0,1)), total_iter)
viz_logger.add_image(logger_prefix+'image/mask_gt', misc.image_grid(mask_gt.detach().cpu()[:b0,:].reshape(-1,*mask_gt.shape[2:]).unsqueeze(1).repeat(1,3,1,1).clamp(0,1)), total_iter)
viz_logger.add_image(logger_prefix+'image/mask_pred', misc.image_grid(mask_pred.detach().cpu()[:b0,:].reshape(-1,*mask_pred.shape[2:]).unsqueeze(1).repeat(1,3,1,1).clamp(0,1)), total_iter)
if self.render_flow and flow_gt is not None:
flow_gt = flow_gt.detach().cpu()
flow_gt_viz = torch.cat([flow_gt[:b0], torch.zeros_like(flow_gt[:b0,:,:1])], 2) + 0.5 # -0.5~1.5
flow_gt_viz = torch.nn.functional.pad(flow_gt_viz, pad=[0, 0, 0, 0, 0, 0, 0, 1])
## draw marker on large flow frames
large_flow_marker_mask = torch.zeros_like(flow_gt_viz)
large_flow_marker_mask[:,:,:,:8,:8] = 1.
large_flow = torch.cat([self.large_flow, self.large_flow[:,:1] *0.], 1).detach().cpu()[:b0]
large_flow_marker_mask = large_flow_marker_mask * large_flow[:,:,None,None,None]
red = torch.FloatTensor([1,0,0])[None,None,:,None,None]
flow_gt_viz = large_flow_marker_mask * red + (1-large_flow_marker_mask) * flow_gt_viz
viz_logger.add_image(logger_prefix+'image/flow_gt', misc.image_grid(flow_gt_viz.reshape(-1,*flow_gt_viz.shape[2:])), total_iter)
if self.render_flow and flow_pred is not None:
flow_pred = flow_pred.detach().cpu()
flow_pred_viz = torch.cat([flow_pred[:b0], torch.zeros_like(flow_pred[:b0,:,:1])], 2) + 0.5 # -0.5~1.5
flow_pred_viz = torch.nn.functional.pad(flow_pred_viz, pad=[0, 0, 0, 0, 0, 0, 0, 1])
viz_logger.add_image(logger_prefix+'image/flow_pred', misc.image_grid(flow_pred_viz.reshape(-1,*flow_pred_viz.shape[2:])), total_iter)
if light is not None:
param_names = ['dir_x', 'dir_y', 'dir_z', 'int_ambient', 'int_diffuse']
for name, param in zip(param_names, light.light_params.unbind(-1)):
viz_logger.add_histogram(logger_prefix+'light/'+name, param, total_iter)
viz_logger.add_image(
logger_prefix + f'image/albedo',
misc.image_grid(expandF(albedo)[:b0, ...].view(-1, *albedo.shape[1:])),
total_iter)
viz_logger.add_image(
logger_prefix + f'image/shading',
misc.image_grid(expandF(shading)[:b0, ...].view(-1, *shading.shape[1:]).repeat(1, 3, 1, 1) /2.),
total_iter)
viz_logger.add_histogram(logger_prefix+'sdf', self.netPrior.netShape.get_sdf(perturb_sdf=False), total_iter)
viz_logger.add_histogram(logger_prefix+'coordinates', shape.v_pos, total_iter)
if arti_params is not None:
viz_logger.add_histogram(logger_prefix+'arti_params', arti_params, total_iter)
viz_logger.add_histogram(logger_prefix+'edge_lengths', aux_viz['edge_lengths'], total_iter)
if deformation is not None:
viz_logger.add_histogram(logger_prefix+'deformation', deformation, total_iter)
rot_rep = self.netInstance.rot_rep
if rot_rep == 'euler_angle' or rot_rep == 'soft_calss':
for i, name in enumerate(['rot_x', 'rot_y', 'rot_z', 'trans_x', 'trans_y', 'trans_z']):
viz_logger.add_histogram(logger_prefix+'pose/'+name, pose[...,i], total_iter)
elif rot_rep == 'quaternion':
for i, name in enumerate(['qt_0', 'qt_1', 'qt_2', 'qt_3', 'trans_x', 'trans_y', 'trans_z']):
viz_logger.add_histogram(logger_prefix+'pose/'+name, pose[...,i], total_iter)
rot_euler = pytorch3d.transforms.matrix_to_euler_angles(pytorch3d.transforms.quaternion_to_matrix(pose.detach().cpu()[...,:4]), convention='XYZ')
for i, name in enumerate(['rot_x', 'rot_y', 'rot_z']):
viz_logger.add_histogram(logger_prefix+'pose/'+name, rot_euler[...,i], total_iter)
elif rot_rep in ['lookat', 'quadlookat', 'octlookat']:
for i, name in enumerate(['fwd_x', 'fwd_y', 'fwd_z']):
viz_logger.add_histogram(logger_prefix+'pose/'+name, pose_raw[...,i], total_iter)
for i, name in enumerate(['trans_x', 'trans_y', 'trans_z']):
viz_logger.add_histogram(logger_prefix+'pose/'+name, pose_raw[...,-3+i], total_iter)
if rot_rep in ['quadlookat', 'octlookat']:
for i, rp in enumerate(forward_aux['rots_probs'].unbind(-1)):
viz_logger.add_histogram(logger_prefix+'pose/rot_prob_%d'%i, rp, total_iter)
if 'pose_xflip_raw' in aux_viz:
pose_xflip_raw = aux_viz['pose_xflip_raw']
if rot_rep == 'euler_angle' or rot_rep == 'soft_calss':
for i, name in enumerate(['rot_x', 'rot_y', 'rot_z', 'trans_x', 'trans_y', 'trans_z']):
viz_logger.add_histogram(logger_prefix+'pose_xflip/'+name, pose_xflip[...,i], total_iter)
elif rot_rep == 'quaternion':
for i, name in enumerate(['qt_0', 'qt_1', 'qt_2', 'qt_3', 'trans_x', 'trans_y', 'trans_z']):
viz_logger.add_histogram(logger_prefix+'pose_xflip/'+name, pose_xflip[...,i], total_iter)
rot_euler = pytorch3d.transforms.matrix_to_euler_angles(pytorch3d.transforms.quaternion_to_matrix(pose_xflip.detach().cpu()[...,:4]), convention='XYZ')
for i, name in enumerate(['rot_x', 'rot_y', 'rot_z']):
viz_logger.add_histogram(logger_prefix+'pose_xflip/'+name, rot_euler[...,i], total_iter)
elif rot_rep in ['lookat', 'quadlookat', 'octlookat']:
for i, name in enumerate(['fwd_x', 'fwd_y', 'fwd_z']):
viz_logger.add_histogram(logger_prefix+'pose_xflip/'+name, pose_xflip_raw[...,i], total_iter)
for i, name in enumerate(['trans_x', 'trans_y', 'trans_z']):
viz_logger.add_histogram(logger_prefix+'pose_xflip/'+name, pose_xflip_raw[...,-3+i], total_iter)
if dino_feat_im_gt is not None:
dino_feat_im_gt_first3 = dino_feat_im_gt[:,:,:3]
viz_logger.add_image(logger_prefix+'image/dino_feat_im_gt', misc.image_grid(dino_feat_im_gt_first3.detach().cpu()[:b0,:].reshape(-1,*dino_feat_im_gt_first3.shape[2:]).clamp(0,1)), total_iter)
if dino_cluster_im_gt is not None:
viz_logger.add_image(logger_prefix+'image/dino_cluster_im_gt', misc.image_grid(dino_cluster_im_gt.detach().cpu()[:b0,:].reshape(-1,*dino_cluster_im_gt.shape[2:]).clamp(0,1)), total_iter)
if dino_feat_im_pred is not None:
dino_feat_im_pred_first3 = dino_feat_im_pred[:,:,:3]
viz_logger.add_image(logger_prefix+'image/dino_feat_im_pred', misc.image_grid(dino_feat_im_pred_first3.detach().cpu()[:b0,:].reshape(-1,*dino_feat_im_pred_first3.shape[2:]).clamp(0,1)), total_iter)
for which_shape, modes in self.extra_renders.items():
# This is wrong
# if which_shape == "prior":
# shape_to_render = prior_shape.extend(im_features.shape[0])
# needed_im_features = None
if which_shape == "instance":
shape_to_render = shape
needed_im_features = im_features
else:
raise NotImplementedError
for mode in modes:
rendered, _, _, _, _, _ = self.render(shape_to_render, texture, mvp, w2c, campos, (h, w), background=self.background_mode, im_features=needed_im_features, prior_shape=prior_shape, render_mode=mode, render_flow=False, dino_pred=None)
if 'kd' in mode:
rendered = util.rgb_to_srgb(rendered)
rendered = rendered.detach().cpu()
if 'posed_bones' in aux_viz:
rendered_bone_image = self.render_bones(mvp, aux_viz['posed_bones'], (h, w))
rendered_bone_image_mask = (rendered_bone_image < 1).any(1, keepdim=True).float()
# viz_logger.add_image(logger_prefix+'image/articulation_bones', misc.image_grid(self.render_bones(mvp, aux_viz['posed_bones'])), total_iter)
rendered = rendered_bone_image_mask*0.8 * rendered_bone_image + (1-rendered_bone_image_mask*0.8) * rendered
if rot_rep in ['quadlookat', 'octlookat']:
rand_pose_flag = forward_aux['rand_pose_flag'].detach().cpu()
rand_pose_marker_mask = torch.zeros_like(rendered)
rand_pose_marker_mask[:,:,:16,:16] = 1.
rand_pose_marker_mask = rand_pose_marker_mask * rand_pose_flag[:,None,None,None]
red = torch.FloatTensor([1,0,0])[None,:,None,None]
rendered = rand_pose_marker_mask * red + (1-rand_pose_marker_mask) * rendered
viz_logger.add_image(
logger_prefix + f'image/{which_shape}_{mode}',
misc.image_grid(expandF(rendered)[:b0, ...].view(-1, *rendered.shape[1:])),
total_iter)
viz_logger.add_video(
logger_prefix + f'animation/{which_shape}_{mode}',
self.render_rotation_frames(shape_to_render, texture, light, (h, w), background=self.background_mode, im_features=needed_im_features, prior_shape=prior_shape, num_frames=15, render_mode=mode, b=1).detach().cpu().unsqueeze(0),
total_iter,
fps=2)
viz_logger.add_video(
logger_prefix+'animation/prior_image_rotation',
self.render_rotation_frames(prior_shape, texture, light, (h, w), background=self.background_mode, im_features=im_features, num_frames=15, b=1).detach().cpu().unsqueeze(0).clamp(0,1),
total_iter,
fps=2)
viz_logger.add_video(
logger_prefix+'animation/prior_normal_rotation',
self.render_rotation_frames(prior_shape, texture, light, (h, w), background=self.background_mode, im_features=im_features, num_frames=15, render_mode='geo_normal', b=1).detach().cpu().unsqueeze(0),
total_iter,
fps=2)
if save_results:
b0 = self.cfgs.get('num_saved_from_each_batch', batch_size*num_frames)
fnames = [f'{total_iter:07d}_{fid:10d}' for fid in collapseF(frame_id.int())][:b0]
misc.save_images(save_dir, collapseF(image_gt)[:b0].clamp(0,1).detach().cpu().numpy(), suffix='image_gt', fnames=fnames)
misc.save_images(save_dir, collapseF(image_pred)[:b0].clamp(0,1).detach().cpu().numpy(), suffix='image_pred', fnames=fnames)
misc.save_images(save_dir, collapseF(mask_gt)[:b0].unsqueeze(1).repeat(1,3,1,1).clamp(0,1).detach().cpu().numpy(), suffix='mask_gt', fnames=fnames)
misc.save_images(save_dir, collapseF(mask_pred)[:b0].unsqueeze(1).repeat(1,3,1,1).clamp(0,1).detach().cpu().numpy(), suffix='mask_pred', fnames=fnames)
# tmp_shape = shape.first_n(b0).clone()
# tmp_shape.material = texture
# feat = im_features[:b0] if im_features is not None else None
# misc.save_obj(save_dir, tmp_shape, save_material=False, feat=feat, suffix="mesh", fnames=fnames) # Save the first mesh.
# if self.render_flow and flow_gt is not None:
# flow_gt_viz = torch.cat([flow_gt, torch.zeros_like(flow_gt[:,:,:1])], 2) + 0.5 # -0.5~1.5
# flow_gt_viz = flow_gt_viz.view(-1, *flow_gt_viz.shape[2:])
# misc.save_images(save_dir, flow_gt_viz[:b0].clamp(0,1).detach().cpu().numpy(), suffix='flow_gt', fnames=fnames)
# if flow_pred is not None:
# flow_pred_viz = torch.cat([flow_pred, torch.zeros_like(flow_pred[:,:,:1])], 2) + 0.5 # -0.5~1.5
# flow_pred_viz = flow_pred_viz.view(-1, *flow_pred_viz.shape[2:])
# misc.save_images(save_dir, flow_pred_viz[:b0].clamp(0,1).detach().cpu().numpy(), suffix='flow_pred', fnames=fnames)
misc.save_txt(save_dir, pose[:b0].detach().cpu().numpy(), suffix='pose', fnames=fnames)
return metrics
def save_scores(self, path):
header = 'mask_mse, \
mask_iou, \
image_mse, \
flow_mse'
mean = self.all_scores.mean(0)
std = self.all_scores.std(0)
header = header + '\nMean: ' + ',\t'.join(['%.8f'%x for x in mean])
header = header + '\nStd: ' + ',\t'.join(['%.8f'%x for x in std])
misc.save_scores(path, self.all_scores, header=header)
print(header)
def render_rotation_frames(self, mesh, texture, light, resolution, background='none', im_features=None, prior_shape=None, num_frames=36, render_mode='diffuse', b=None):
frames = []
if b is None:
b = len(mesh)
else:
mesh = mesh.first_n(b)
feat = im_features[:b] if im_features is not None else None
delta_angle = np.pi / num_frames * 2
delta_rot_matrix = torch.FloatTensor([
[np.cos(delta_angle), 0, np.sin(delta_angle), 0],
[0, 1, 0, 0],
[-np.sin(delta_angle), 0, np.cos(delta_angle), 0],
[0, 0, 0, 1],
]).to(self.device).repeat(b, 1, 1)
w2c = torch.FloatTensor(np.diag([1., 1., 1., 1]))
w2c[:3, 3] = torch.FloatTensor([0, 0, -self.cam_pos_z_offset *1.1])
w2c = w2c.repeat(b, 1, 1).to(self.device)
proj = util.perspective(self.crop_fov_approx / 180 * np.pi, 1, n=0.1, f=1000.0).repeat(b, 1, 1).to(self.device)
mvp = torch.bmm(proj, w2c)
campos = -w2c[:, :3, 3]
def rotate_pose(mvp, campos):
mvp = torch.matmul(mvp, delta_rot_matrix)
campos = torch.matmul(delta_rot_matrix[:,:3,:3].transpose(2,1), campos[:,:,None])[:,:,0]
return mvp, campos
for _ in range(num_frames):
image_pred, _, _, _, _, _ = self.render(mesh, texture, mvp, w2c, campos, resolution, background=background, im_features=feat, light=light, prior_shape=prior_shape, render_flow=False, dino_pred=None, render_mode=render_mode, two_sided_shading=False)
frames += [misc.image_grid(image_pred)]
mvp, campos = rotate_pose(mvp, campos)
return torch.stack(frames, dim=0) # Shape: (T, C, H, W)
def render_bones(self, mvp, bones_pred, size=(256, 256)):
bone_world4 = torch.concat([bones_pred, torch.ones_like(bones_pred[..., :1]).to(bones_pred.device)], dim=-1)
b, f, num_bones = bone_world4.shape[:3]
bones_clip4 = (bone_world4.view(b, f, num_bones*2, 1, 4) @ mvp.transpose(-1, -2).reshape(b, f, 1, 4, 4)).view(b, f, num_bones, 2, 4)
bones_uv = bones_clip4[..., :2] / bones_clip4[..., 3:4] # b, f, num_bones, 2, 2
dpi = 32
fx, fy = size[1] // dpi, size[0] // dpi
rendered = []
for b_idx in range(b):
for f_idx in range(f):
frame_bones_uv = bones_uv[b_idx, f_idx].cpu().numpy()
fig = plt.figure(figsize=(fx, fy), dpi=dpi, frameon=False)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
for bone in frame_bones_uv:
ax.plot(bone[:, 0], bone[:, 1], marker='o', linewidth=8, markersize=20)
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.invert_yaxis()
# Convert to image
fig.add_axes(ax)
fig.canvas.draw_idle()
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
image.resize(h, w, 3)
rendered += [image / 255.]
return torch.from_numpy(np.stack(rendered, 0).transpose(0, 3, 1, 2))
def render_deformation_frames(self, mesh, texture, batch_size, num_frames, resolution, background='none', im_features=None, render_mode='diffuse', b=None):
# frames = []
# if b is None:
# b = batch_size
# im_features = im_features[]
# mesh = mesh.first_n(num_frames * b)
# for i in range(b):
# tmp_mesh = mesh.get_m_to_n(i*num_frames:(i+1)*num_frames)
pass
|