Spaces:
Sleeping
Sleeping
File size: 8,940 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import numpy as np
import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr
from . import util
from . import renderutils as ru
from ..networks import MLP
######################################################################################
# Utility functions
######################################################################################
class cubemap_mip(torch.autograd.Function):
@staticmethod
def forward(ctx, cubemap):
return util.avg_pool_nhwc(cubemap, (2,2))
@staticmethod
def backward(ctx, dout):
res = dout.shape[1] * 2
out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda")
for s in range(6):
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"),
torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"),
indexing='ij')
v = util.safe_normalize(util.cube_to_dir(s, gx, gy))
out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')
return out
######################################################################################
# Split-sum environment map light source with automatic mipmap generation
######################################################################################
class EnvironmentLight(torch.nn.Module):
LIGHT_MIN_RES = 16
MIN_ROUGHNESS = 0.08
MAX_ROUGHNESS = 0.5
def __init__(self, base):
super(EnvironmentLight, self).__init__()
self.mtx = None
self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True)
self.register_parameter('env_base', self.base)
def xfm(self, mtx):
self.mtx = mtx
def clone(self):
return EnvironmentLight(self.base.clone().detach())
def clamp_(self, min=None, max=None):
self.base.clamp_(min, max)
def get_mip(self, roughness):
return torch.where(roughness < self.MAX_ROUGHNESS
, (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2)
, (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2)
def build_mips(self, cutoff=0.99):
self.specular = [self.base]
while self.specular[-1].shape[1] > self.LIGHT_MIN_RES:
self.specular += [cubemap_mip.apply(self.specular[-1])]
self.diffuse = ru.diffuse_cubemap(self.specular[-1])
for idx in range(len(self.specular) - 1):
roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS
self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff)
self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff)
def regularizer(self):
white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0
return torch.mean(torch.abs(self.base - white))
def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True):
wo = util.safe_normalize(view_pos - gb_pos)
if specular:
roughness = ks[..., 1:2] # y component
metallic = ks[..., 2:3] # z component
spec_col = (1.0 - metallic)*0.04 + kd * metallic
diff_col = kd * (1.0 - metallic)
else:
diff_col = kd
reflvec = util.safe_normalize(util.reflect(wo, gb_normal))
nrmvec = gb_normal
if self.mtx is not None: # Rotate lookup
mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda')
reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape)
nrmvec = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape)
# Diffuse lookup
diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube')
shaded_col = diffuse * diff_col
if specular:
# Lookup FG term from lookup texture
NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4)
fg_uv = torch.cat((NdotV, roughness), dim=-1)
if not hasattr(self, '_FG_LUT'):
self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda')
fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp')
# Roughness adjusted specular env lookup
miplevel = self.get_mip(roughness)
spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube')
# Compute aggregate lighting
reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2]
shaded_col += spec * reflectance
return shaded_col * (1.0 - ks[..., 0:1]) # Modulate by hemisphere visibility
######################################################################################
# Load and store
######################################################################################
# Load from latlong .HDR file
def _load_env_hdr(fn, scale=1.0):
latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale
cubemap = util.latlong_to_cubemap(latlong_img, [512, 512])
l = EnvironmentLight(cubemap)
l.build_mips()
return l
def load_env(fn, scale=1.0):
if os.path.splitext(fn)[1].lower() == ".hdr":
return _load_env_hdr(fn, scale)
else:
assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1]
def save_env_map(fn, light):
assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently"
if isinstance(light, EnvironmentLight):
color = util.cubemap_to_latlong(light.base, [512, 1024])
util.save_image_raw(fn, color.detach().cpu().numpy())
######################################################################################
# Create trainable env map with random initialization
######################################################################################
def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25):
base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias
return EnvironmentLight(base)
######################################################################################
# Directional light source
######################################################################################
class DirectionalLight(torch.nn.Module):
def __init__(self, mlp_in, mlp_layers, mlp_hidden_size, intensity_min_max=None):
super(DirectionalLight, self).__init__()
self.mlp = MLP(mlp_in, 4, mlp_layers, nf=mlp_hidden_size, activation='sigmoid')
if intensity_min_max is not None:
self.register_buffer('intensity_min_max', intensity_min_max)
else:
self.intensity_min_max = None
def forward(self, feat):
# print('----------------- forward light !!! -----------------')
out = self.mlp(feat)
light_dir = F.normalize(torch.cat([out[..., 0:1] *2-1, torch.ones_like(out[..., :1]) * 0.5, out[..., 1:2] *2-1], dim=-1), dim=-1) # upper hemisphere
if self.intensity_min_max is not None:
int = out[..., 2:] * (self.intensity_min_max[1][None, :] - self.intensity_min_max[0][None, :]) + self.intensity_min_max[0][None, :]
self.light_params = torch.cat([light_dir, int], -1)
return self.light_params
def shade(self, feat, kd, normal):
light_params = self.forward(feat)
light_dir = light_params[..., :3][:, None, None, :]
int_amb = light_params[..., 3:4][:, None, None, :]
int_diff = light_params[..., 4:5][:, None, None, :]
shading = (int_amb + int_diff * torch.clamp(util.dot(light_dir, normal), min=0.0))
shaded = shading * kd
return shaded, shading
|