File size: 8,940 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

import os
import numpy as np
import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr

from . import util
from . import renderutils as ru
from ..networks import MLP

######################################################################################
# Utility functions
######################################################################################

class cubemap_mip(torch.autograd.Function):
    @staticmethod
    def forward(ctx, cubemap):
        return util.avg_pool_nhwc(cubemap, (2,2))

    @staticmethod
    def backward(ctx, dout):
        res = dout.shape[1] * 2
        out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda")
        for s in range(6):
            gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), 
                                    torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"),
                                    indexing='ij')
            v = util.safe_normalize(util.cube_to_dir(s, gx, gy))
            out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')
        return out

######################################################################################
# Split-sum environment map light source with automatic mipmap generation
######################################################################################

class EnvironmentLight(torch.nn.Module):
    LIGHT_MIN_RES = 16

    MIN_ROUGHNESS = 0.08
    MAX_ROUGHNESS = 0.5

    def __init__(self, base):
        super(EnvironmentLight, self).__init__()
        self.mtx = None      
        self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True)
        self.register_parameter('env_base', self.base)

    def xfm(self, mtx):
        self.mtx = mtx

    def clone(self):
        return EnvironmentLight(self.base.clone().detach())

    def clamp_(self, min=None, max=None):
        self.base.clamp_(min, max)

    def get_mip(self, roughness):
        return torch.where(roughness < self.MAX_ROUGHNESS
                        , (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2)
                        , (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2)
        
    def build_mips(self, cutoff=0.99):
        self.specular = [self.base]
        while self.specular[-1].shape[1] > self.LIGHT_MIN_RES:
            self.specular += [cubemap_mip.apply(self.specular[-1])]

        self.diffuse = ru.diffuse_cubemap(self.specular[-1])

        for idx in range(len(self.specular) - 1):
            roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS
            self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff) 
        self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff)

    def regularizer(self):
        white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0
        return torch.mean(torch.abs(self.base - white))

    def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True):
        wo = util.safe_normalize(view_pos - gb_pos)

        if specular:
            roughness = ks[..., 1:2] # y component
            metallic  = ks[..., 2:3] # z component
            spec_col  = (1.0 - metallic)*0.04 + kd * metallic
            diff_col  = kd * (1.0 - metallic)
        else:
            diff_col = kd

        reflvec = util.safe_normalize(util.reflect(wo, gb_normal))
        nrmvec = gb_normal
        if self.mtx is not None: # Rotate lookup
            mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda')
            reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape)
            nrmvec  = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape)

        # Diffuse lookup
        diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube')
        shaded_col = diffuse * diff_col

        if specular:
            # Lookup FG term from lookup texture
            NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4)
            fg_uv = torch.cat((NdotV, roughness), dim=-1)
            if not hasattr(self, '_FG_LUT'):
                self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda')
            fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp')

            # Roughness adjusted specular env lookup
            miplevel = self.get_mip(roughness)
            spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube')

            # Compute aggregate lighting
            reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2]
            shaded_col += spec * reflectance

        return shaded_col * (1.0 - ks[..., 0:1]) # Modulate by hemisphere visibility

######################################################################################
# Load and store
######################################################################################

# Load from latlong .HDR file
def _load_env_hdr(fn, scale=1.0):
    latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale
    cubemap = util.latlong_to_cubemap(latlong_img, [512, 512])

    l = EnvironmentLight(cubemap)
    l.build_mips()

    return l

def load_env(fn, scale=1.0):
    if os.path.splitext(fn)[1].lower() == ".hdr":
        return _load_env_hdr(fn, scale)
    else:
        assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1]

def save_env_map(fn, light):
    assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently"
    if isinstance(light, EnvironmentLight):
        color = util.cubemap_to_latlong(light.base, [512, 1024])
    util.save_image_raw(fn, color.detach().cpu().numpy())

######################################################################################
# Create trainable env map with random initialization
######################################################################################

def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25):
    base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias
    return EnvironmentLight(base)


######################################################################################
# Directional light source
######################################################################################

class DirectionalLight(torch.nn.Module):
    def __init__(self, mlp_in, mlp_layers, mlp_hidden_size, intensity_min_max=None):
        super(DirectionalLight, self).__init__()
        self.mlp = MLP(mlp_in, 4, mlp_layers, nf=mlp_hidden_size, activation='sigmoid')
        if intensity_min_max is not None:
            self.register_buffer('intensity_min_max', intensity_min_max)
        else:
            self.intensity_min_max = None

    def forward(self, feat):
        # print('----------------- forward light !!! -----------------')
        out = self.mlp(feat)
        light_dir = F.normalize(torch.cat([out[..., 0:1] *2-1, torch.ones_like(out[..., :1]) * 0.5, out[..., 1:2] *2-1], dim=-1), dim=-1)  # upper hemisphere
        if self.intensity_min_max is not None:
            int = out[..., 2:] * (self.intensity_min_max[1][None, :] - self.intensity_min_max[0][None, :]) + self.intensity_min_max[0][None, :]
        self.light_params = torch.cat([light_dir, int], -1)
        return self.light_params

    def shade(self, feat, kd, normal):
        light_params = self.forward(feat)
        light_dir = light_params[..., :3][:, None, None, :]
        int_amb = light_params[..., 3:4][:, None, None, :]
        int_diff = light_params[..., 4:5][:, None, None, :]
        shading = (int_amb + int_diff * torch.clamp(util.dot(light_dir, normal), min=0.0))
        shaded = shading * kd
        return shaded, shading