File size: 60,879 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
e2db5d0
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
import os
import os.path as osp
from copy import deepcopy
from collections import OrderedDict
import glob
from datetime import datetime
import random
import copy
import imageio
import torch
# import clip
import torchvision.transforms.functional as tvf
import video3d.utils.meters as meters
import video3d.utils.misc as misc
# from video3d.dataloaders import get_image_loader
from video3d.dataloaders_ddp import get_sequence_loader_ddp, get_sequence_loader_quadrupeds, get_test_loader_quadrupeds
from . import discriminator_architecture


def sample_frames(batch, num_sample_frames, iteration, stride=1):
    ## window slicing sampling
    images, masks, flows, bboxs, bg_image, seq_idx, frame_idx = batch
    num_seqs, total_num_frames = images.shape[:2]
    # start_frame_idx = iteration % (total_num_frames - num_sample_frames +1)

    ## forward and backward
    num_windows = total_num_frames - num_sample_frames +1
    start_frame_idx = (iteration * stride) % (2*num_windows)
    ## x' = (2n-1)/2 - |(2n-1)/2 - x| : 0,1,2,3,4,5 -> 0,1,2,2,1,0
    mid_val = (2*num_windows -1) /2
    start_frame_idx = int(mid_val - abs(mid_val -start_frame_idx))

    new_batch = images[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        masks[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        flows[:, start_frame_idx:start_frame_idx+num_sample_frames-1], \
        bboxs[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        bg_image, \
        seq_idx, \
        frame_idx[:, start_frame_idx:start_frame_idx+num_sample_frames]
    return new_batch


def indefinite_generator(loader):
    while True:
        for x in loader:
            yield x


def indefinite_generator_from_list(loaders):
    while True:
        random_idx = random.randint(0, len(loaders)-1)
        for x in loaders[random_idx]:
            yield x
            break


def get_optimizer(model, lr=0.0001, betas=(0.9, 0.999), weight_decay=0):
    return torch.optim.Adam(
            filter(lambda p: p.requires_grad, model.parameters()),
            lr=lr, betas=betas, weight_decay=weight_decay)


class Fewshot_Trainer:
    def __init__(self, cfgs, model):
        # only now supports one gpu
        self.cfgs = cfgs
        # here should be the one gpu ddp setting
        self.rank = cfgs.get('rank', 0)
        self.world_size = cfgs.get('world_size', 1)
        self.use_ddp = cfgs.get('use_ddp', True)
        self.device = cfgs.get('device', 'cpu')

        self.num_epochs = cfgs.get('num_epochs', 1)
        self.lr = cfgs.get('few_shot_lr', 1e-4)
        self.dataset = 'image'

        self.metrics_trace = meters.MetricsTrace()
        self.make_metrics = lambda m=None: meters.StandardMetrics(m)

        self.archive_code = cfgs.get('archive_code', True)
        self.batch_size = cfgs.get('batch_size', 64)
        self.in_image_size = cfgs.get('in_image_size', 256)
        self.out_image_size = cfgs.get('out_image_size', 256)
        self.num_workers = cfgs.get('num_workers', 4)
        self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
        misc.xmkdir(self.checkpoint_dir)
        self.few_shot_resume = cfgs.get('few_shot_resume', False)
        self.save_checkpoint_freq = cfgs.get('save_checkpoint_freq', 1)
        self.keep_num_checkpoint = cfgs.get('keep_num_checkpoint', 2)  # -1 for keeping all checkpoints

        self.few_shot_data_dir = cfgs.get('few_shot_data_dir', None)
        assert self.few_shot_data_dir is not None
        # in case we add more data source
        if isinstance(self.few_shot_data_dir, list):
            self.few_shot_data_dir_more = self.few_shot_data_dir[1:]
            self.few_shot_data_dir = self.few_shot_data_dir[0]
        else:
            self.few_shot_data_dir_more = None

        assert "data_resize_update" in self.few_shot_data_dir # TODO: a hack way to make sure not using wrong data, needs to remove
        self.few_shot_categories, self.few_shot_categories_paths = self.parse_few_shot_categories(self.few_shot_data_dir, self.few_shot_data_dir_more)

        # if we need test categories, we pop it from self.few_shot_categories and self.few_shot_categories_path
        # the test category needs to be category from few-shot, and we're using bs=1 on them, no need for back views enhancement (for now, use back view images, but don't duplicate them)
        self.test_category_num = cfgs.get('few_shot_test_category_num', 0)
        self.test_category_names = cfgs.get('few_shot_test_category_names', None)
        if self.test_category_num > 0:
            # if we have valid test_category names, then use them, the number doesn't need to be equal
            if self.test_category_names is not None:
                test_cats = self.test_category_names
            else:
                test_cats = list(self.few_shot_categories_paths.keys())[-(self.test_category_num):]
            test_categories_paths = {}
            for test_cat in test_cats:
                test_categories_paths.update({test_cat: self.few_shot_categories_paths[test_cat]})
                assert test_cat in self.few_shot_categories
                self.few_shot_categories.remove(test_cat)
                self.few_shot_categories_paths.pop(test_cat)
            
            self.test_categories_paths = test_categories_paths
        else:
            self.test_categories_paths = None

        # also load the original 7 categories
        self.original_train_data_path = cfgs.get('train_data_dir', None)
        self.original_val_data_path = cfgs.get('val_data_dir', None)
        self.original_categories = []
        self.original_categories_paths = self.original_train_data_path
        for k, v in self.original_train_data_path.items():
            self.original_categories.append(k)

        self.categories = self.original_categories + self.few_shot_categories
        self.categories_paths = self.original_train_data_path.copy()
        self.categories_paths.update(self.few_shot_categories_paths)
        
        print(f'Using {len(self.categories)} cateogires: ', self.categories)

        # initialize new things
        # self.original_classes_num = cfgs.get('few_shot_original_classes_num', 7)
        self.original_classes_num = len(self.original_categories)
        self.new_classes_num = len(self.categories) - self.original_classes_num

        self.combine_dataset = cfgs.get('combine_dataset', False)
        assert self.combine_dataset, "we should use combine dataset, it's up to date"
        if self.combine_dataset:
            self.train_loader, self.val_loader, self.test_loader = self.get_data_loaders_quadrupeds(self.cfgs, self.batch_size, self.num_workers, self.in_image_size, self.out_image_size)
        else:
            self.train_loader_few_shot, self.val_loader_few_shot = self.get_data_loaders_few_shot(self.cfgs, self.batch_size, self.num_workers, self.in_image_size, self.out_image_size)
            self.train_loader_original, self.val_loader_original = self.get_data_loaders_original(self.cfgs, self.batch_size, self.num_workers, self.in_image_size, self.out_image_size)
            self.train_loader = self.train_loader_original + self.train_loader_few_shot
            if self.val_loader_few_shot is not None and self.val_loader_original is not None:
                self.val_loader = self.val_loader_original + self.val_loader_few_shot

        self.num_iterations = cfgs.get('num_iterations', 0)
        if self.num_iterations != 0:
            self.use_total_iterations = True
        else:
            self.use_total_iterations = False
        if self.use_total_iterations:
            # reset the epoch related cfgs
            
            dataloader_length = max([len(loader) for loader in self.train_loader]) * len(self.train_loader)
            print("Total length of data loader is: ", dataloader_length)
            
            total_epoch = int(self.num_iterations / dataloader_length) + 1

            print(f'run for {total_epoch} epochs')
            
            print('is_main_process()?', misc.is_main_process())

            for k, v in cfgs.items():
                if 'epoch' in k:
                    # if isinstance(v, list):
                    #     new_v = [int(total_epoch * x / 120) + 1 for x in v]
                    #     cfgs[k] = new_v
                    # elif isinstance(v, int):
                    #     new_v = int(total_epoch * v / 120) + 1
                    #     cfgs[k] = new_v

                    # a better transformation
                    if isinstance(v, int):
                        # use the floor int
                        new_v = int(total_epoch * v / 120)
                        cfgs[k] = new_v
                    elif isinstance(v, list):
                        if v[0] == v[1]:
                            # if the values in v are the same, then we use both the floor value
                            new_v = [int(total_epoch * x / 120) for x in v]
                        else:
                            # if the values are not the same, make the first using floor value and others using ceil value
                            new_v = [int(total_epoch * x / 120) + 1 for x in v]
                            new_v[0] = new_v[0] - 1
                        cfgs[k] = new_v
                else:
                    continue
            
            self.num_epochs = total_epoch
            self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
            self.cfgs = cfgs

        # the model is with nothing now
        self.model = model(cfgs)

        self.metrics_trace = meters.MetricsTrace()
        self.make_metrics = lambda m=None: meters.StandardMetrics(m)
        
        self.use_logger = True
        self.log_freq_images = cfgs.get('log_freq_images', 1000)
        self.log_train_images = cfgs.get('log_train_images', False)
        self.log_freq_losses = cfgs.get('log_freq_losses', 100)
        self.save_result_freq = cfgs.get('save_result_freq', None)
        self.train_result_dir = osp.join(self.checkpoint_dir, 'results')
        self.fix_viz_batch = cfgs.get('fix_viz_batch', False)
        self.visualize_validation = cfgs.get('visualize_validation', False)
        # self.visualize_validation = False
        self.iteration_save = cfgs.get('few_shot_iteration_save', False)
        self.iteration_save_freq = cfgs.get('few_shot_iteration_save_freq', 2000)

        self.enable_memory_bank = cfgs.get('enable_memory_bank', False)
        if self.enable_memory_bank:
            self.memory_bank_dim = 128
            self.memory_bank_size = cfgs.get('memory_bank_size', 60)
            self.memory_bank_topk = cfgs.get('memory_bank_topk', 10)
            # assert self.memory_bank_topk < self.memory_bank_size
            assert self.memory_bank_topk <= self.memory_bank_size
            self.memory_retrieve = cfgs.get('memory_retrieve', 'cos-linear')
            
            self.memory_bank_init = cfgs.get('memory_bank_init', 'random')
            if self.memory_bank_init == 'copy':
                # use trained 7 embeddings to initialize
                num_piece = self.memory_bank_size // self.original_classes_num
                num_left = self.memory_bank_size - num_piece * self.original_classes_num

                tmp_1 = torch.empty_like(self.model.netPrior.classes_vectors)
                tmp_1 = tmp_1.copy_(self.model.netPrior.classes_vectors)
                tmp_1 = tmp_1.unsqueeze(0).repeat(num_piece, 1, 1)
                tmp_1 = tmp_1.reshape(tmp_1.shape[0] * tmp_1.shape[1], tmp_1.shape[-1])

                if num_left > 0:
                    tmp_2 = torch.empty_like(self.model.netPrior.classes_vectors)
                    tmp_2 = tmp_2.copy_(self.model.netPrior.classes_vectors)
                    tmp_2 = tmp_2[:num_left]
                    tmp = torch.cat([tmp_1, tmp_2], dim=0)
                else:
                    tmp = tmp_1
                
                self.memory_bank = torch.nn.Parameter(tmp, requires_grad=True)
            
            elif self.memory_bank_init == 'random':
                self.memory_bank = torch.nn.Parameter(torch.nn.init.uniform_(torch.empty(self.memory_bank_size, self.memory_bank_dim), a=-0.05, b=0.05), requires_grad=True)
            else:
                raise NotImplementedError
            
            self.memory_encoder = cfgs.get('memory_encoder', 'DINO')  # if DINO then just use the network encoder
            if self.memory_encoder == 'CLIP':
                self.clip_model, _ = clip.load('ViT-B/32', self.device)
                self.clip_model = self.clip_model.eval().requires_grad_(False)
                self.clip_mean = [0.48145466, 0.4578275, 0.40821073]
                self.clip_std = [0.26862954, 0.26130258, 0.27577711]
                self.clip_reso = 224

                self.memory_bank_keys_dim = 512
            
            elif self.memory_encoder == 'DINO':
                self.memory_bank_keys_dim = 384
            
            else:
                raise NotImplementedError
            
            memory_bank_keys = torch.nn.init.uniform_(torch.empty(self.memory_bank_size, self.memory_bank_keys_dim), a=-0.05, b=0.05)
            self.memory_bank_keys = torch.nn.Parameter(memory_bank_keys, requires_grad=True)
        
        else:
            print("no memory bank, just use image embedding, this is only for one experiment!")
            self.memory_encoder = cfgs.get('memory_encoder', 'DINO')  # if DINO then just use the network encoder
            if self.memory_encoder == 'CLIP':
                self.clip_model, _ = clip.load('ViT-B/32', self.device)
                self.clip_model = self.clip_model.eval().requires_grad_(False)
                self.clip_mean = [0.48145466, 0.4578275, 0.40821073]
                self.clip_std = [0.26862954, 0.26130258, 0.27577711]
                self.clip_reso = 224

                self.memory_bank_keys_dim = 512
            
            elif self.memory_encoder == 'DINO':
                self.memory_bank_keys_dim = 384
            
            else:
                raise NotImplementedError

        self.prepare_model()
    
    def parse_few_shot_categories(self, data_dir, data_dir_more=None):
        # parse the categories data_dir
        few_shot_category_num = self.cfgs.get('few_shot_category_num', -1)
        assert few_shot_category_num != 0
        categories = sorted(os.listdir(data_dir))
        cnt = 0
        category_names = []
        category_names_paths = {}
        for category in categories:
            if osp.isdir(osp.join(self.few_shot_data_dir, category, 'train')):
                category_path = osp.join(self.few_shot_data_dir, category, 'train')
                category_names.append(category)
                category_names_paths.update({category: category_path})
                cnt += 1
                if few_shot_category_num > 0 and cnt >= few_shot_category_num:
                    break
        
        # more data
        if data_dir_more is not None:
            for data_dir_one in data_dir_more:
                new_categories = os.listdir(data_dir_one)
                for new_category in new_categories:
                    '''
                    if this category is not used before, add a new item
                    if there is this category before, add the paths to original paths,
                        if its a str, make it a list
                        if its already a list, append it
                    '''
                    if new_category not in category_names:

                        #TODO: a hacky way here, if in new data there is category used in 7-cat, we just make it a new one
                        if new_category in list(self.cfgs.get('train_data_dir', None).keys()):
                            new_category = '_' + new_category

                        category_names.append(new_category)
                        category_names_paths.update({
                            new_category: osp.join(data_dir_one, new_category, 'train')
                        })
                    else:
                        old_category_path = category_names_paths[new_category]
                        if isinstance(old_category_path, str):
                            category_names_paths[new_category] = [
                                old_category_path,
                                osp.join(data_dir_one, new_category, 'train')
                            ]
                        elif isinstance(old_category_path, list):
                            old_category_path = old_category_path + [osp.join(data_dir_one, new_category, 'train')]
                            category_names_paths[new_category] = old_category_path
                        else:
                            raise NotImplementedError
            
            # category_names = sorted(category_names)

        return category_names, category_names_paths

    def prepare_model(self):
        # here we prepare the model weights at outside
        # 1. load the pretrain weight
        # 2. initialize anything new, like new class vectors
        # 3. initialize new optimizer for chosen parameters

        assert self.original_classes_num == len(self.model.netPrior.category_id_map)
        
        # load pretrain
        # if not assigned few_shot_checkpoint_name, then skip this part
        if self.cfgs.get('few_shot_checkpoint_name', None) is not None:
            original_checkpoint_path = osp.join(self.checkpoint_dir, self.cfgs.get('few_shot_checkpoint_name', 'checkpoint060.pth'))
            assert osp.exists(original_checkpoint_path)
            print(f"Loading pre-trained checkpoint from {original_checkpoint_path}")
            cp = torch.load(original_checkpoint_path, map_location=self.device)
            
            # if using local-texture network in fine-tuning, the texture in previous pre-train ckpt is global
            # here we use a hack way, we just get rid of original texture ckpt
            if (self.cfgs.get('texture_way', None) is not None) or (self.cfgs.get('texture_act', 'relu') != 'relu'):
                new_netInstance_weights = {k: v for k, v in cp['netInstance'].items() if 'netTexture' not in k}
                #find the new texture weights 
                texture_weights = self.model.netInstance.netTexture.state_dict()
                #add the new weights to the new model weights
                for k, v in texture_weights.items():
                    # for the overlapping part in netTexture, we also use them
                    # if ('netTexture.' + k) in cp['netInstance'].keys():
                    #     new_netInstance_weights['netTexture.' + k] = cp['netInstance']['netTexture.' + k]
                    # else:
                    #     new_netInstance_weights['netTexture.' + k] = v
                    new_netInstance_weights['netTexture.' + k] = v
                _ = cp.pop("netInstance")
                cp.update({"netInstance": new_netInstance_weights})

            self.model.netInstance.load_state_dict(cp["netInstance"], strict=False) # For Deform
            # self.model.netInstance.load_state_dict(cp["netInstance"])
            self.model.netPrior.load_state_dict(cp["netPrior"])

            self.original_total_iter = cp["total_iter"]
        
        else:
            print("not load any pre-train weight, the iter will start from 0, make sure you set all the needed parameters")
            self.original_total_iter = 0

        if not self.cfgs.get('disable_fewshot', False):
            for i, category in enumerate(self.few_shot_categories):
                category_id = self.original_classes_num + i
                self.model.netPrior.category_id_map.update({category: category_id})
            
            few_shot_class_vector_init = self.cfgs.get('few_shot_class_vector_init', 'random')
            if few_shot_class_vector_init == 'random':
                tmp = torch.nn.init.uniform_(torch.empty(self.new_classes_num, self.model.netPrior.classes_vectors.shape[-1]), a=-0.05, b=0.05)
                tmp = tmp.to(self.model.netPrior.classes_vectors.device)
                self.model.netPrior.classes_vectors = torch.nn.Parameter(torch.cat([self.model.netPrior.classes_vectors, tmp], dim=0))
            elif few_shot_class_vector_init == 'copy':
                num_7_cat_piece = self.new_classes_num // self.original_classes_num if self.new_classes_num > self.original_classes_num else 0
                num_left = self.new_classes_num - num_7_cat_piece * self.original_classes_num
                
                if num_7_cat_piece > 0:
                    tmp_1 = torch.empty_like(self.model.netPrior.classes_vectors)
                    tmp_1 = tmp_1.copy_(self.model.netPrior.classes_vectors)
                    tmp_1 = tmp_1.unsqueeze(0).repeat(num_7_cat_piece, 1, 1)
                    tmp_1 = tmp_1.reshape(tmp_1.shape[0] * tmp_1.shape[1], tmp_1.shape[-1])
                else:
                    tmp_1 = None
                
                if num_left > 0:
                    tmp_2 = torch.empty_like(self.model.netPrior.classes_vectors)
                    tmp_2 = tmp_2.copy_(self.model.netPrior.classes_vectors)
                    tmp_2 = tmp_2[:num_left]
                else:
                    tmp_2 = None
                
                if tmp_1 != None and tmp_2 != None:
                    tmp = torch.cat([tmp_1, tmp_2], dim=0)
                elif tmp_1 == None and tmp_2 != None:
                    tmp = tmp_2
                elif tmp_2 == None and tmp_1 != None:
                    tmp = tmp_1
                else:
                    raise NotImplementedError

                tmp = tmp.to(self.model.netPrior.classes_vectors.device)
                self.model.netPrior.classes_vectors = torch.nn.Parameter(torch.cat([self.model.netPrior.classes_vectors, tmp], dim=0))
            else:
                raise NotImplementedError
        
        else:
            print("disable few shot, not increasing embedding vectors")
        
        # initialize new optimizer
        optimize_rule = self.cfgs.get('few_shot_optimize', 'all')
        if optimize_rule == 'all':
            optimize_list = [
                {'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
                {'name': 'net_Instance', 'params': list(self.model.netInstance.parameters()), 'lr': self.lr * 1.},
            ]
        elif optimize_rule == 'only-emb':
            optimize_list = [
                {'name': 'class_embeddings', 'params': list([self.model.netPrior.classes_vectors]), 'lr': self.lr * 10.}
            ]
        elif optimize_rule == 'emb-instance':
            optimize_list = [
                {'name': 'class_embeddings', 'params': list([self.model.netPrior.classes_vectors]), 'lr': self.lr * 10.},
                {'name': 'net_Instance', 'params': list(self.model.netInstance.parameters()), 'lr': self.lr * 1.},
            ]
        elif optimize_rule == 'custom':
            optimize_list = [
                {'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
                {'name': 'netEncoder', 'params': list(self.model.netInstance.netEncoder.parameters()), 'lr': self.lr * 1.},
                {'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
                {'name': 'netPose', 'params': list(self.model.netInstance.netPose.parameters()), 'lr': self.lr * 0.01},
                {'name': 'netArticulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 1.},
                {'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.}
            ]
        elif optimize_rule == 'custom-deform':
            optimize_list = [
                {'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
                {'name': 'netEncoder', 'params': list(self.model.netInstance.netEncoder.parameters()), 'lr': self.lr * 1.},
                {'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
                {'name': 'netPose', 'params': list(self.model.netInstance.netPose.parameters()), 'lr': self.lr * 0.01},
                {'name': 'netArticulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 1.},
                {'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.},
                {'name': 'netDeform', 'params': list(self.model.netInstance.netDeform.parameters()), 'lr': self.lr * 1.}
            ]
        elif optimize_rule == 'texture':
            optimize_list = [
                {'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.}
            ]
        elif optimize_rule == 'texture-light':
            optimize_list = [
                {'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
                {'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.}
            ]
        elif optimize_rule == 'exp':
            optimize_list = [
                {'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
                {'name': 'netEncoder', 'params': list(self.model.netInstance.netEncoder.parameters()), 'lr': self.lr * 1.},
                {'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
                {'name': 'netPose', 'params': list(self.model.netInstance.netPose.parameters()), 'lr': self.lr * 1.},
                {'name': 'netArticulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 1.},
                {'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.},
                {'name': 'netDeform', 'params': list(self.model.netInstance.netDeform.parameters()), 'lr': self.lr * 1.}
            ]
        else:
            raise NotImplementedError
        
        if self.enable_memory_bank and optimize_rule != 'texture':
            
            optimize_bank_components = self.cfgs.get('few_shot_optimize_bank', 'all')
            if optimize_bank_components == 'value':
                optimize_list += [
                    {'name': 'memory_bank', 'params': list([self.memory_bank]), 'lr': self.lr * 10.}
                ]
            elif optimize_bank_components == 'key':
                optimize_list += [
                    {'name': 'memory_bank_keys', 'params': list([self.memory_bank_keys]), 'lr': self.lr * 10.}
                ]
            else:
                optimize_list += [
                    {'name': 'memory_bank', 'params': list([self.memory_bank]), 'lr': self.lr * 10.},
                    {'name': 'memory_bank_keys', 'params': list([self.memory_bank_keys]), 'lr': self.lr * 10.}
                ]

        if self.model.enable_vsd:
            optimize_list += [
                {'name': 'lora', 'params': list(self.model.stable_diffusion.parameters()), 'lr': self.lr}
            ]

        # self.optimizerFewShot = torch.optim.Adam(
        #     [
        #         # {'name': 'class_embeddings', 'params': list([self.model.netPrior.classes_vectors]), 'lr': self.lr * 1.},
        #         {'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
        #         {'name': 'net_Instance', 'params': list(self.model.netInstance.parameters()), 'lr': self.lr * 1.},
        #         # {'name': 'net_articulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 10.}
        #     ], betas=(0.9, 0.99), eps=1e-15
        # )
        self.optimizerFewShot = torch.optim.Adam(optimize_list, betas=(0.9, 0.99), eps=1e-15)

        # if self.cfgs.get('texture_way', None) is not None and self.cfgs.get('gan_tex', False):
        if self.cfgs.get('gan_tex', False):
            self.optimizerDiscTex = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.discriminator_texture.parameters()), lr=self.lr, betas=(0.9, 0.99), eps=1e-15)

    def load_checkpoint(self, optim=True, checkpoint_name=None):
        # use to load the checkpoint of model and optimizer in the finetuning
        """Search the specified/latest checkpoint in checkpoint_dir and load the model and optimizer."""
        if checkpoint_name is not None:
            checkpoint_path = osp.join(self.checkpoint_dir, checkpoint_name)
        else:
            checkpoints = sorted(glob.glob(osp.join(self.checkpoint_dir, '*.pth')))
            if len(checkpoints) == 0:
                return 0, 0
            checkpoint_path = checkpoints[-1]
            self.checkpoint_name = osp.basename(checkpoint_path)
        print(f"Loading checkpoint from {checkpoint_path}")
        cp = torch.load(checkpoint_path, map_location=self.device)
        self.model.load_model_state(cp)  # the cp has netPrior and netInstance as keys
        if optim:
            try:
                self.optimizerFewShot.load_state_dict(cp['optimizerFewShot'])
            except:
                print('you should be using the local texture so dont need to load the previous optimizer')
        if self.enable_memory_bank:
            self.memory_bank_keys = cp['memory_bank_keys']
            self.memory_bank = cp['memory_bank']
        self.metrics_trace = cp['metrics_trace']
        epoch = cp['epoch']
        total_iter = cp['total_iter']
        return epoch, total_iter
    
    def save_checkpoint(self, epoch, total_iter=0, optim=True, use_iter=False):
        """Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
        misc.xmkdir(self.checkpoint_dir)
        if use_iter:
            checkpoint_path = osp.join(self.checkpoint_dir, f'iter{total_iter:07}.pth')
            prefix = 'iter*.pth'
        else:
            checkpoint_path = osp.join(self.checkpoint_dir, f'checkpoint{epoch:03}.pth')
            prefix = 'checkpoint*.pth'
        state_dict = self.model.get_model_state()
        if optim:
            optimizer_state = {'optimizerFewShot': self.optimizerFewShot.state_dict()}
            state_dict = {**state_dict, **optimizer_state}
        state_dict['metrics_trace'] = self.metrics_trace
        state_dict['epoch'] = epoch
        state_dict['total_iter'] = total_iter
        if self.enable_memory_bank:
            state_dict['memory_bank_keys'] = self.memory_bank_keys
            state_dict['memory_bank'] = self.memory_bank
        print(f"Saving checkpoint to {checkpoint_path}")
        torch.save(state_dict, checkpoint_path)
        if self.keep_num_checkpoint > 0:
            self.clean_checkpoint(self.checkpoint_dir, keep_num=self.keep_num_checkpoint, prefix=prefix)

    def clean_checkpoint(self, checkpoint_dir, keep_num=2, prefix='checkpoint*.pth'):
        if keep_num > 0:
            names = list(sorted(
                glob.glob(os.path.join(checkpoint_dir, prefix))
            ))
            if len(names) > keep_num:
                for name in names[:-keep_num]:
                    print(f"Deleting obslete checkpoint file {name}")
                    os.remove(name)
    
    def get_data_loaders_few_shot(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
        # support the train_data_loaders, and also an identical val_data_loader?
        train_loader = val_loader = None

        color_jitter_train = cfgs.get('color_jitter_train', None)
        color_jitter_val = cfgs.get('color_jitter_val', None)
        random_flip_train = cfgs.get('random_flip_train', False)

        data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
        
        num_sample_frames = cfgs.get('num_sample_frames', 2)
        shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
        load_background = cfgs.get('background_mode', 'none') == 'background'
        rgb_suffix = cfgs.get('rgb_suffix', '.png')
        load_dino_feature = cfgs.get('load_dino_feature', False)
        dino_feature_dim = cfgs.get('dino_feature_dim', 64)
        get_loader_ddp = lambda **kwargs: get_sequence_loader_ddp(
            mode=data_loader_mode,
            batch_size=batch_size,
            num_workers=num_workers,
            in_image_size=in_image_size,
            out_image_size=out_image_size,
            num_sample_frames=num_sample_frames,
            load_background=load_background,
            rgb_suffix=rgb_suffix,
            load_dino_feature=load_dino_feature,
            dino_feature_dim=dino_feature_dim,
            flow_bool=0,
            **kwargs)

        print(f"Loading training data...")
        train_loader = get_loader_ddp(data_dir=[self.original_classes_num, self.few_shot_categories_paths], rank=self.rank, world_size=self.world_size, use_few_shot=True, shuffle=False, color_jitter=color_jitter_train, random_flip=random_flip_train)
        return train_loader, val_loader

    def get_data_loaders_original(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
        train_loader = val_loader = test_loader = None
        color_jitter_train = cfgs.get('color_jitter_train', None)
        color_jitter_val = cfgs.get('color_jitter_val', None)
        random_flip_train = cfgs.get('random_flip_train', False)

        data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
        skip_beginning = cfgs.get('skip_beginning', 4)
        skip_end = cfgs.get('skip_end', 4)
        num_sample_frames = cfgs.get('num_sample_frames', 2)
        min_seq_len = cfgs.get('min_seq_len', 10)
        max_seq_len = cfgs.get('max_seq_len', 10)
        debug_seq = cfgs.get('debug_seq', False)
        random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
        shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
        random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
        load_background = cfgs.get('background_mode', 'none') == 'background'
        rgb_suffix = cfgs.get('rgb_suffix', '.png')
        load_dino_feature = cfgs.get('load_dino_feature', False)
        load_dino_cluster = cfgs.get('load_dino_cluster', False)
        dino_feature_dim = cfgs.get('dino_feature_dim', 64)
        get_loader_ddp = lambda **kwargs: get_sequence_loader_ddp(
            mode=data_loader_mode,
            batch_size=batch_size,
            num_workers=num_workers,
            in_image_size=in_image_size,
            out_image_size=out_image_size,
            debug_seq=debug_seq,
            skip_beginning=skip_beginning,
            skip_end=skip_end,
            num_sample_frames=num_sample_frames,
            min_seq_len=min_seq_len,
            max_seq_len=max_seq_len,
            load_background=load_background,
            rgb_suffix=rgb_suffix,
            load_dino_feature=load_dino_feature,
            load_dino_cluster=load_dino_cluster,
            dino_feature_dim=dino_feature_dim,
            flow_bool=0,
            **kwargs)
        
        # just the train now
        train_data_dir = self.original_categories_paths
        if isinstance(train_data_dir, dict):
            for data_path in train_data_dir.values():
                assert osp.isdir(data_path), f"Training data directory does not exist: {data_path}"
        elif isinstance(train_data_dir, str):
            assert osp.isdir(train_data_dir), f"Training data directory does not exist: {train_data_dir}"
        else:
            raise ValueError("train_data_dir must be a string or a dict of strings")
        
        print(f"Loading training data...")
        # the train_data_dir is a dict and will go into the original dataset type
        train_loader = get_loader_ddp(data_dir=train_data_dir, rank=self.rank, world_size=self.world_size, is_validation=False, use_few_shot=False, random_sample=random_sample_train_frames, shuffle=shuffle_train_seqs, dense_sample=True, color_jitter=color_jitter_train, random_flip=random_flip_train)

        return train_loader, val_loader

    def get_data_loaders_quadrupeds(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
        train_loader = val_loader = test_loader = None
        color_jitter_train = cfgs.get('color_jitter_train', None)
        color_jitter_val = cfgs.get('color_jitter_val', None)
        random_flip_train = cfgs.get('random_flip_train', False)

        data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
        skip_beginning = cfgs.get('skip_beginning', 4)
        skip_end = cfgs.get('skip_end', 4)
        num_sample_frames = cfgs.get('num_sample_frames', 2)
        min_seq_len = cfgs.get('min_seq_len', 10)
        max_seq_len = cfgs.get('max_seq_len', 10)
        debug_seq = cfgs.get('debug_seq', False)
        random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
        shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
        random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
        load_background = cfgs.get('background_mode', 'none') == 'background'
        rgb_suffix = cfgs.get('rgb_suffix', '.png')
        load_dino_feature = cfgs.get('load_dino_feature', False)
        load_dino_cluster = cfgs.get('load_dino_cluster', False)
        dino_feature_dim = cfgs.get('dino_feature_dim', 64)

        enhance_back_view = cfgs.get('enhance_back_view', False)
        enhance_back_view_path = cfgs.get('enhance_back_view_path', None)

        override_categories = cfgs.get('override_categories', None)

        disable_fewshot = cfgs.get('disable_fewshot', False)
        dataset_split_num = cfgs.get('dataset_split_num', -1)

        get_loader_ddp = lambda **kwargs: get_sequence_loader_quadrupeds(
            mode=data_loader_mode,
            num_workers=num_workers,
            in_image_size=in_image_size,
            out_image_size=out_image_size,
            debug_seq=debug_seq,
            skip_beginning=skip_beginning,
            skip_end=skip_end,
            num_sample_frames=num_sample_frames,
            min_seq_len=min_seq_len,
            max_seq_len=max_seq_len,
            load_background=load_background,
            rgb_suffix=rgb_suffix,
            load_dino_feature=load_dino_feature,
            load_dino_cluster=load_dino_cluster,
            dino_feature_dim=dino_feature_dim,
            flow_bool=0,
            enhance_back_view=enhance_back_view,
            enhance_back_view_path=enhance_back_view_path,
            override_categories=override_categories,
            disable_fewshot=disable_fewshot,
            dataset_split_num=dataset_split_num,
            **kwargs)
        
        # just the train now
        
        print(f"Loading training data...")
        val_image_num = cfgs.get('few_shot_val_image_num', 5)
        # the train_data_dir is a dict and will go into the original dataset type
        train_loader = get_loader_ddp(original_data_dirs=self.original_categories_paths, few_shot_data_dirs=self.few_shot_categories_paths, original_num=self.original_classes_num, few_shot_num=self.new_classes_num, rank=self.rank, world_size=self.world_size, batch_size=batch_size, is_validation=False, val_image_num=val_image_num, shuffle=shuffle_train_seqs, dense_sample=True, color_jitter=color_jitter_train, random_flip=random_flip_train)
        val_loader = get_loader_ddp(original_data_dirs=self.original_val_data_path, few_shot_data_dirs=self.few_shot_categories_paths, original_num=self.original_classes_num, few_shot_num=self.new_classes_num, rank=self.rank, world_size=self.world_size, batch_size=1, is_validation=True, val_image_num=val_image_num, shuffle=False, dense_sample=True, color_jitter=color_jitter_val, random_flip=False)

        if self.test_categories_paths is not None:
            get_test_loader_ddp = lambda **kwargs: get_test_loader_quadrupeds(
                mode=data_loader_mode,
                num_workers=num_workers,
                in_image_size=in_image_size,
                out_image_size=out_image_size,
                debug_seq=debug_seq,
                skip_beginning=skip_beginning,
                skip_end=skip_end,
                num_sample_frames=num_sample_frames,
                min_seq_len=min_seq_len,
                max_seq_len=max_seq_len,
                load_background=load_background,
                rgb_suffix=rgb_suffix,
                load_dino_feature=load_dino_feature,
                load_dino_cluster=load_dino_cluster,
                dino_feature_dim=dino_feature_dim,
                flow_bool=0,
                enhance_back_view=enhance_back_view,
                enhance_back_view_path=enhance_back_view_path,
                **kwargs)
            print(f"Loading testing data...")
            test_loader = get_test_loader_ddp(test_data_dirs=self.test_categories_paths, rank=self.rank, world_size=self.world_size, batch_size=1, is_validation=True, shuffle=False, dense_sample=True, color_jitter=color_jitter_val, random_flip=False)
        else:
            test_loader = None

        return train_loader, val_loader, test_loader
    
    def forward_frozen_ViT(self, images):
        # this part use the frozen pre-train ViT
        x = images
        with torch.no_grad():
            b, c, h, w = x.shape
            self.model.netInstance.netEncoder._feats = []
            self.model.netInstance.netEncoder._register_hooks([11], 'key')
            #self._register_hooks([11], 'token')
            x = self.model.netInstance.netEncoder.ViT.prepare_tokens(x)
            #x = self.ViT.prepare_tokens_with_masks(x)
            
            for blk in self.model.netInstance.netEncoder.ViT.blocks:
                x = blk(x)
            out = self.model.netInstance.netEncoder.ViT.norm(x)
            self.model.netInstance.netEncoder._unregister_hooks()

            ph, pw = h // self.model.netInstance.netEncoder.patch_size, w // self.model.netInstance.netEncoder.patch_size
            patch_out = out[:, 1:]  # first is class token
            patch_out = patch_out.reshape(b, ph, pw, self.model.netInstance.netEncoder.vit_feat_dim).permute(0, 3, 1, 2)

            patch_key = self.model.netInstance.netEncoder._feats[0][:,:,1:]  # B, num_heads, num_patches, dim
            patch_key = patch_key.permute(0, 1, 3, 2).reshape(b, self.model.netInstance.netEncoder.vit_feat_dim, ph, pw)

            global_feat = out[:, 0]
        
        return global_feat
    
    def forward_fix_embeddings(self, batch):
        images = batch[0]
        images = images.to(self.device)
        batch_size, num_frames, _, h0, w0 = images.shape
        images = images.reshape(batch_size*num_frames, *images.shape[2:])  # 0~1

        if self.memory_encoder == 'DINO':
            images_in = images * 2 - 1  # rescale to (-1, 1)
            batch_features = self.forward_frozen_ViT(images_in)
        elif self.memory_encoder == 'CLIP':
            images_in = torch.nn.functional.interpolate(images, (self.clip_reso, self.clip_reso), mode='bilinear')
            images_in = tvf.normalize(images_in, self.clip_mean, self.clip_std)
            batch_features = self.clip_model.encode_image(images_in).float()
        else:
            raise NotImplementedError
        return batch_features

    def retrieve_memory_bank(self, batch_features, batch):
        batch_size = batch_features.shape[0]
        
        if self.memory_retrieve == 'cos-linear':
            query = torch.nn.functional.normalize(batch_features.unsqueeze(1), dim=-1)      # [B, 1, d_k]
            key = torch.nn.functional.normalize(self.memory_bank_keys, dim=-1)              # [size, d_k]
            key = key.transpose(1, 0).unsqueeze(0).repeat(batch_size, 1, 1).to(query.device)             # [B, d_k, size]

            cos_dist = torch.bmm(query, key).squeeze(1)         # [B, size], larger the more similar
            rank_idx = torch.sort(cos_dist, dim=-1, descending=True)[1][:, :self.memory_bank_topk] # [B, k]
            value = self.memory_bank.unsqueeze(0).repeat(batch_size, 1, 1).to(query.device)                         # [B, size, d_v]

            out = torch.gather(value, dim=1, index=rank_idx[..., None].repeat(1, 1, self.memory_bank_dim))  # [B, k, d_v]

            weights = torch.gather(cos_dist, dim=-1, index=rank_idx)    # [B, k]
            weights = torch.nn.functional.normalize(weights, p=1.0, dim=-1).unsqueeze(-1).repeat(1, 1, self.memory_bank_dim)    # [B, k, d_v] weights have been normalized

            out = weights * out
            out = torch.sum(out, dim=1)

        else:
            raise NotImplementedError
        
        batch_mean_out = torch.mean(out, dim=0)

        weight_aux = {
            'weights': weights[:, :, 0], # [B, k], weights from large to small
            'pick_idx': rank_idx, # [B, k]
        }

        return batch_mean_out, out, weight_aux

    def discriminator_texture_step(self):
        image_iv = self.model.record_image_iv
        image_rv = self.model.record_image_rv
        image_gt = self.model.record_image_gt
        
        self.model.record_image_iv = None
        self.model.record_image_rv = None
        self.model.record_image_gt = None

        image_iv = image_iv.requires_grad_(True)
        image_rv = image_rv.requires_grad_(True)
        image_gt = image_gt.requires_grad_(True)

        self.optimizerDiscTex.zero_grad()
        disc_loss_gt = 0.0
        disc_loss_iv = 0.0
        disc_loss_rv = 0.0
        grad_penalty = 0.0
        # for the gt image, it can only be in real or not
        if 'gt' in self.model.few_shot_gan_tex_real:
            d_gt = self.model.discriminator_texture(image_gt)
            disc_loss_gt += discriminator_architecture.bce_loss_target(d_gt, 1)
            if image_gt.requires_grad:
                grad_penalty_gt = 10. * discriminator_architecture.compute_grad2(d_gt, image_gt)
                disc_loss_gt += grad_penalty_gt
                grad_penalty += grad_penalty_gt
        
        # for the input view image, it can be in real or fake
        if 'iv' in self.model.few_shot_gan_tex_real:
            d_iv = self.model.discriminator_texture(image_iv)
            disc_loss_iv += discriminator_architecture.bce_loss_target(d_iv, 1)
            if image_iv.requires_grad:
                grad_penalty_iv = 10. * discriminator_architecture.compute_grad2(d_iv, image_iv)
                disc_loss_iv += grad_penalty_iv
                grad_penalty += grad_penalty_iv
        elif 'iv' in self.model.few_shot_gan_tex_fake:
            d_iv = self.model.discriminator_texture(image_iv)
            disc_loss_iv += discriminator_architecture.bce_loss_target(d_iv, 0)
        
        # for the random view image, it can only be in fake
        if 'rv' in self.model.few_shot_gan_tex_fake:
            d_rv = self.model.discriminator_texture(image_rv)
            disc_loss_rv += discriminator_architecture.bce_loss_target(d_rv, 0)

        all_loss = disc_loss_iv + disc_loss_rv + disc_loss_gt

        all_loss = all_loss * self.cfgs.get('gan_tex_loss_discriminator_weight', 0.1)
        self.discriminator_texture_loss = all_loss
        self.discriminator_texture_loss.backward()
        self.optimizerDiscTex.step()
        self.discriminator_texture_loss = 0.

        return {
            'discriminator_loss': all_loss.detach(),
            'discriminator_loss_iv': disc_loss_iv.detach(),
            'discriminator_loss_rv': disc_loss_rv.detach(),
            'discriminator_loss_gt': disc_loss_gt.detach(),
            'discriminator_loss_grad': grad_penalty.detach()
        }

    def train(self):
        """Perform training."""
        # archive code and configs
        if self.archive_code:
            misc.archive_code(osp.join(self.checkpoint_dir, 'archived_code.zip'), filetypes=['.py'])
        misc.dump_yaml(osp.join(self.checkpoint_dir, 'configs.yml'), self.cfgs)

        # initialize
        start_epoch = 0
        self.total_iter = 0
        self.total_iter = self.original_total_iter
        self.metrics_trace.reset()
        self.model.to(self.device)

        if self.model.enable_disc:
            self.model.reset_only_disc_optimizer()

        if self.few_shot_resume:
            resume_model_name = self.cfgs.get('few_shot_resume_name', None)
            start_epoch, self.total_iter = self.load_checkpoint(optim=True, checkpoint_name=resume_model_name)
        
        self.model.ddp(self.rank, self.world_size)

        # use tensorboard
        if self.use_logger:
            from torch.utils.tensorboard import SummaryWriter
            self.logger = SummaryWriter(osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")), flush_secs=10)
            # self.viz_data_iterator = indefinite_generator_from_list(self.val_loader) if self.visualize_validation else indefinite_generator_from_list(self.train_loader)
            self.viz_data_iterator = indefinite_generator(self.val_loader[0]) if self.visualize_validation else indefinite_generator(self.train_loader[0])
            if self.fix_viz_batch:
                self.viz_batch = next(self.viz_data_iterator)
            
            if self.test_loader is not None:
                self.viz_test_data_iterator = indefinite_generator(self.test_loader[0]) if self.visualize_validation else indefinite_generator(self.train_loader[0])
        
        # run_epochs
        epoch = 0

        for epoch in range(start_epoch, self.num_epochs):
            metrics = self.run_epoch(epoch)
            if self.combine_dataset:
                self.train_loader[0].dataset._shuffle_all()
            self.metrics_trace.append("train", metrics)
            if (epoch+1) % self.save_checkpoint_freq == 0:
                self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True)
            # if self.cfgs.get('pyplot_metrics', True):
            #     self.metrics_trace.plot(pdf_path=osp.join(self.checkpoint_dir, 'metrics.pdf'))
            self.metrics_trace.save(osp.join(self.checkpoint_dir, 'metrics.json'))
        print(f"Training completed for all {epoch+1} epochs.")
    
    def run_epoch(self, epoch):
        """Run one training epoch."""
        metrics = self.make_metrics()

        self.model.set_train()

        max_loader_len = max([len(loader) for loader in self.train_loader])
        train_generators = [indefinite_generator(loader) for loader in self.train_loader]

        iteration = 0
        while iteration < max_loader_len * len(self.train_loader):
            for generator in train_generators:
                batch = next(generator)

                self.total_iter += 1
                num_seqs, num_frames = batch[0].shape[:2]
                total_im_num = num_seqs * num_frames

                if self.enable_memory_bank:
                    batch_features = self.forward_fix_embeddings(batch)
                    batch_embedding, embeddings, weights = self.retrieve_memory_bank(batch_features, batch)
                    bank_embedding_model_input = [batch_embedding, embeddings, weights]
                else:
                    # bank_embedding_model_input = None
                    batch_features = self.forward_fix_embeddings(batch)
                    weights = {
                        "weights": torch.rand(1,10).to(batch_features.device),
                        "pick_idx": torch.randint(low=0, high=60, size=(1, 10)).to(batch_features.device)
                    }
                    bank_embedding_model_input = [batch_features[0], batch_features, weights]
                m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data=self.dataset, is_training=True, bank_embedding=bank_embedding_model_input)

                # self.model.backward()
                self.optimizerFewShot.zero_grad()
                self.model.total_loss.backward()
                self.optimizerFewShot.step()
                self.model.total_loss = 0.

                # if self.cfgs.get('texture_way', None) is not None and self.cfgs.get('gan_tex', False):
                if self.model.few_shot_gan_tex:
                    # the discriminator for local texture
                    disc_ret = self.discriminator_texture_step()
                    m.update(disc_ret)
                
                if self.model.enable_disc and (self.model.mask_discriminator_iter[0] < self.total_iter) and (self.model.mask_discriminator_iter[1] > self.total_iter):
                    # the discriminator training
                    discriminator_loss_dict, grad_loss = self.model.discriminator_step()
                    m.update(
                        {
                            'mask_disc_loss_discriminator': discriminator_loss_dict['discriminator_loss'] - grad_loss, 
                            'mask_disc_loss_discriminator_grad': grad_loss,
                            'mask_disc_loss_discriminator_rv': discriminator_loss_dict['discriminator_loss_rv'],
                            'mask_disc_loss_discriminator_iv': discriminator_loss_dict['discriminator_loss_iv'],
                            'mask_disc_loss_discriminator_gt': discriminator_loss_dict['discriminator_loss_gt']
                        }
                    )
                    self.logger.add_histogram('train_'+'discriminator_logits/random_view', discriminator_loss_dict['d_rv'], self.total_iter)
                    if discriminator_loss_dict['d_iv'] is not None:
                        self.logger.add_histogram('train_'+'discriminator_logits/input_view', discriminator_loss_dict['d_iv'], self.total_iter)
                    if discriminator_loss_dict['d_gt'] is not None:
                        self.logger.add_histogram('train_'+'discriminator_logits/gt_view', discriminator_loss_dict['d_gt'], self.total_iter)

                metrics.update(m, total_im_num)
                if self.rank == 0:
                    print(f"T{epoch:04}/{iteration:05}/{metrics}")

                if self.iteration_save and self.total_iter % self.iteration_save_freq == 0:
                    self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True, use_iter=True)

                # ## reset optimizers
                # if self.cfgs.get('opt_reset_every_iter', 0) > 0 and self.total_iter < self.cfgs.get('opt_reset_end_iter', 0):
                #     if self.total_iter % self.cfgs.get('opt_reset_every_iter', 0) == 0:
                #         self.model.reset_optimizers()

                if misc.is_main_process() and self.use_logger:
                    if self.rank == 0 and self.total_iter % self.log_freq_losses == 0:
                        for name, loss in m.items():
                            label = f'cub_loss_train/{name[4:]}' if 'cub' in name else f'loss_train/{name}'
                            self.logger.add_scalar(label, loss, self.total_iter)
                    if self.rank == 0 and self.save_result_freq is not None and self.total_iter % self.save_result_freq == 0:
                        with torch.no_grad():
                            m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=False, save_dir=self.train_result_dir, which_data=self.dataset, is_training=False, bank_embedding=bank_embedding_model_input)
                            torch.cuda.empty_cache()
                    if self.total_iter % self.log_freq_images == 0:
                        with torch.no_grad():
                            if self.rank == 0 and self.log_train_images:
                                m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='train_', is_training=False, bank_embedding=bank_embedding_model_input)
                            if self.fix_viz_batch:
                                print(f'fix_viz_batch:{self.fix_viz_batch}')
                                batch_val = self.viz_batch
                            else:
                                batch_val = next(self.viz_data_iterator)
                            if self.visualize_validation:
                                import time
                                vis_start = time.time()
                                # batch = next(self.viz_data_iterator)
                                # try:
                                #     batch = next(self.viz_data_iterator)
                                # except:  # iterator exhausted
                                #     self.reset_viz_data_iterator()
                                #     batch = next(self.viz_data_iterator)
                                if self.enable_memory_bank:
                                    batch_features_val = self.forward_fix_embeddings(batch_val)
                                    batch_embedding_val, embeddings_val, weights_val = self.retrieve_memory_bank(batch_features_val, batch_val)
                                    bank_embedding_model_input_val = [batch_embedding_val, embeddings_val, weights_val]
                                else:
                                    # bank_embedding_model_input_val = None
                                    batch_features_val = self.forward_fix_embeddings(batch_val)
                                    weights_val = {
                                        "weights": torch.rand(1,10).to(batch_features_val.device),
                                        "pick_idx": torch.randint(low=0, high=60, size=(1, 10)).to(batch_features_val.device)
                                    }
                                    bank_embedding_model_input_val = [batch_features_val[0], batch_features_val, weights_val]
                                
                                if self.total_iter % self.save_result_freq == 0:
                                    m = self.model.forward(batch_val, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, save_results=False, save_dir=self.train_result_dir, which_data=self.dataset, logger_prefix='val_', is_training=False, bank_embedding=bank_embedding_model_input_val)
                                    torch.cuda.empty_cache()
                                
                                vis_end = time.time()
                                print(f"vis time: {vis_end - vis_start}")

                                if self.test_loader is not None:
                                    # unseen category test visualization
                                    batch_test = next(self.viz_test_data_iterator)
                                    if self.enable_memory_bank:
                                        batch_features_test = self.forward_fix_embeddings(batch_test)
                                        batch_embedding_test, embeddings_test, weights_test = self.retrieve_memory_bank(batch_features_test, batch_test)
                                        bank_embedding_model_input_test = [batch_embedding_test, embeddings_test, weights_test]
                                    else:
                                        # bank_embedding_model_input_test = None
                                        batch_features_test = self.forward_fix_embeddings(batch_test)
                                        weights_test = {
                                            "weights": torch.rand(1,10).to(batch_features_test.device),
                                            "pick_idx": torch.randint(low=0, high=60, size=(1, 10)).to(batch_features_test.device)
                                        }
                                        bank_embedding_model_input_test = [batch_features_test[0], batch_features_test, weights_test]
                                    m_test = self.model.forward(batch_test, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='test_', is_training=False, bank_embedding=bank_embedding_model_input_test)
                                    vis_test_end = time.time()
                                    print(f"vis test time: {vis_test_end - vis_end}")
                                    for name, loss in m_test.items():
                                        if self.rank == 0:
                                            self.logger.add_scalar(f'loss_test/{name}', loss, self.total_iter)

                            for name, loss in m.items():
                                if self.rank == 0:
                                    self.logger.add_scalar(f'loss_val/{name}', loss, self.total_iter)
                        torch.cuda.empty_cache()

                iteration += 1

        self.model.scheduler_step()
        return metrics