File size: 13,852 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
# import pytorch3d
# import pytorch3d.loss
# import pytorch3d.renderer
# import pytorch3d.structures
# import pytorch3d.io
# import pytorch3d.transforms
from PIL import Image
from .utils import sphere
from einops import rearrange


def update_camera_pose(cameras, position, at):
    cameras.R = pytorch3d.renderer.look_at_rotation(position, at).to(cameras.device)
    cameras.T = -torch.bmm(cameras.R.transpose(1, 2), position[:, :, None])[:, :, 0]


def get_soft_rasterizer_settings(image_size, sigma=1e-6, gamma=1e-6, faces_per_pixel=30):
    blend_params = pytorch3d.renderer.BlendParams(sigma=sigma, gamma=gamma)
    settings = pytorch3d.renderer.RasterizationSettings(
        image_size=image_size,
        blur_radius=np.log(1. / 1e-4 - 1.) * blend_params.sigma,
        faces_per_pixel=faces_per_pixel,
    )
    return settings, blend_params


class Renderer(nn.Module):
    def __init__(self, cfgs):
        super().__init__()
        self.cfgs = cfgs
        self.device = cfgs.get('device', 'cpu')
        self.image_size = cfgs.get('out_image_size', 64)
        self.full_size_h = cfgs.get('full_size_h', 1080)
        self.full_size_w = cfgs.get('full_size_w', 1920)
        self.fov_w = cfgs.get('fov_w', 60)
        # self.fov_h = cfgs.get('fov_h', 30)
        self.fov_h = np.arctan(np.tan(self.fov_w /2 /180*np.pi) / self.full_size_w * self.full_size_h) *2 /np.pi*180
        self.crop_fov_approx = cfgs.get('crop_fov_approx', 25)
        self.cam_pos_z_offset = cfgs.get('cam_pos_z_offset', 10.)
        self.max_range = np.tan(min(self.fov_h, self.fov_w) /2 /180 * np.pi) * self.cam_pos_z_offset
        cam_pos = torch.FloatTensor([[0, 0, self.cam_pos_z_offset]]).to(self.device)
        cam_at = torch.FloatTensor([[0, 0, 0]]).to(self.device)
        self.rot_rep = cfgs.get('rot_rep', 'euler_angle')
        # self.cameras = pytorch3d.renderer.FoVPerspectiveCameras(fov=self.crop_fov_approx).to(self.device)
        # update_camera_pose(self.cameras, position=cam_pos, at=cam_at)
        # self.full_cameras = pytorch3d.renderer.FoVPerspectiveCameras(fov=self.fov_w).to(self.device)
        # update_camera_pose(self.full_cameras, position=cam_pos, at=cam_at)
        self.image_renderer = self._create_image_renderer()
        self.ico_sphere_subdiv = cfgs.get('ico_sphere_subdiv', 2)
        self.init_shape_scale_xy = float(cfgs.get('init_shape_scale_xy', 1.))
        self.init_shape_scale_z = float(cfgs.get('init_shape_scale_z', 1.))
        # init_verts, init_faces, init_aux = pytorch3d.io.load_obj(cfgs['init_shape_obj'], create_texture_atlas=True, device=self.device)
        # self.init_verts = init_verts *self.init_shape_scale
        # self.meshes = pytorch3d.structures.Meshes(verts=[self.init_verts], faces=[init_faces.verts_idx]).to(self.device)
        # self.tex_faces_uv = init_faces.textures_idx.unsqueeze(0)
        # self.tex_verts_uv = init_aux.verts_uvs.unsqueeze(0)
        # self.texture_atlas = init_aux.texture_atlas.unsqueeze(0)
        # self.num_verts_total = init_verts.size(0)

        # cmap = plt.cm.get_cmap('hsv', self.num_verts_total)
        # verts_texture = cmap(np.random.permutation(self.num_verts_total))[:,:3]
        # self.verts_texture = torch.FloatTensor(verts_texture)
        # debug_uvtex = cfgs.get('debug_uvtex', None)
        # if debug_uvtex is not None:
        #     face_tex_map = Image.open(debug_uvtex).convert('RGB').resize((512, 512))
        #     self.face_tex_map = torch.FloatTensor(np.array(face_tex_map)).permute(2,0,1) / 255.
        # else:
        #     self.face_tex_map = None

        meshes, aux = sphere.get_symmetric_ico_sphere(subdiv=self.ico_sphere_subdiv, return_tex_uv=True, return_face_tex_map=True, device=self.device)
        init_verts = meshes.verts_padded()
        self.init_verts = init_verts * torch.FloatTensor([self.init_shape_scale_xy, self.init_shape_scale_xy, self.init_shape_scale_z]).view(1,1,3).to(init_verts.device)
        # TODO: is this needed?
        self.meshes = meshes.update_padded(init_verts * 0)
        self.tex_faces_uv = aux['face_tex_ids'].unsqueeze(0)
        self.tex_verts_uv = aux['verts_tex_uv'].unsqueeze(0)
        self.face_tex_map = aux['face_tex_map'].permute(2,0,1)
        self.tex_map_seam_mask = aux['seam_mask'].permute(2,0,1)
        self.num_verts_total = init_verts.size(1)
        self.num_verts_seam = aux['num_verts_seam']
        self.num_verts_one_side = aux['num_verts_one_side']

        # hack to turn off texture symmetry
        if cfgs.get('disable_sym_tex', False):
            tex_uv_seam1 = self.tex_verts_uv[:,:aux['num_verts_seam']].clone()
            tex_uv_seam1[:,:,0] = tex_uv_seam1[:,:,0] /2 + 0.5
            tex_uv_side1 = self.tex_verts_uv[:,aux['num_verts_seam']:aux['num_verts_seam']+aux['num_verts_one_side']].clone()
            tex_uv_side1[:,:,0] = tex_uv_side1[:,:,0] /2 + 0.5
            tex_uv_seam2 = self.tex_verts_uv[:,:aux['num_verts_seam']].clone()
            tex_uv_seam2[:,:,0] = tex_uv_seam2[:,:,0] /2
            tex_uv_side2 = self.tex_verts_uv[:,aux['num_verts_seam']+aux['num_verts_one_side']:].clone()
            tex_uv_side2[:,:,0] = tex_uv_side2[:,:,0] /2
            self.tex_verts_uv = torch.cat([tex_uv_seam1, tex_uv_side1, tex_uv_side2, tex_uv_seam2], 1)

            num_faces = self.tex_faces_uv.shape[1]
            face_tex_ids1 = self.tex_faces_uv[:, :num_faces//2].clone()
            face_tex_ids2 = self.tex_faces_uv[:, num_faces//2:].clone()
            face_tex_ids2[face_tex_ids2 < aux['num_verts_seam']] += aux['num_verts_seam'] + 2*aux['num_verts_one_side']
            self.tex_faces_uv = torch.cat([face_tex_ids1, face_tex_ids2], 1)
            self.face_tex_map = torch.cat([self.face_tex_map, self.face_tex_map.flip(2)], 2)
            self.tex_map_seam_mask = torch.cat([self.tex_map_seam_mask, self.tex_map_seam_mask.flip(2)], 2)

    def _create_silhouette_renderer(self):
        settings, blend_params = get_soft_rasterizer_settings(self.image_size)
        return pytorch3d.renderer.MeshRenderer(
            rasterizer=pytorch3d.renderer.MeshRasterizer(cameras=self.cameras, raster_settings=settings),
            shader=pytorch3d.renderer.SoftSilhouetteShader(cameras=self.cameras, blend_params=blend_params)
        )

    def _create_image_renderer(self):
        settings, blend_params = get_soft_rasterizer_settings(self.image_size)
        lights = pytorch3d.renderer.DirectionalLights(device=self.device,
                                                      ambient_color=((1., 1., 1.),),
                                                      diffuse_color=((0., 0., 0.),),
                                                      specular_color=((0., 0., 0.),),
                                                      direction=((0, 1, 0),))
        return pytorch3d.renderer.MeshRenderer(
            rasterizer=pytorch3d.renderer.MeshRasterizer(cameras=self.cameras, raster_settings=settings),
            shader=pytorch3d.renderer.SoftPhongShader(device=self.device, lights=lights, cameras=self.cameras, blend_params=blend_params)
        )

    def transform_verts(self, verts, pose):
        b, f, _ = pose.shape
        if self.rot_rep == 'euler_angle' or self.rot_rep == 'soft_calss':
            rot_mat = pytorch3d.transforms.euler_angles_to_matrix(pose[...,:3].view(-1,3), convention='XYZ')
            tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
        elif self.rot_rep == 'quaternion':
            rot_mat = pytorch3d.transforms.quaternion_to_matrix(pose[...,:4].view(-1,4))
            tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
        elif self.rot_rep == 'lookat':
            rot_mat = pose[...,:9].view(-1,3,3)
            tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
        else:
            raise NotImplementedError
        tsf = tsf.compose(pytorch3d.transforms.Translate(pose[...,-3:].view(-1,3), device=pose.device))
        new_verts = tsf.transform_points(verts.view(b*f, *verts.shape[2:]))
        return new_verts.view(b, f, *new_verts.shape[1:])

    # def transform_mesh(self, mesh, pose):
    #     mesh_verts = mesh.verts_padded()
    #     new_mesh_verts = self.transform_verts(mesh_verts, pose)
    #     new_mesh = mesh.update_padded(new_mesh_verts)
    #     return new_mesh

    def symmetrize_shape(self, shape):
        verts_seam = shape[:,:,:self.num_verts_seam] * torch.FloatTensor([0,1,1]).to(shape.device)
        verts_one_side = shape[:,:,self.num_verts_seam:self.num_verts_seam+self.num_verts_one_side] * torch.FloatTensor([1,1,1]).to(shape.device)
        verts_other_side = verts_one_side * torch.FloatTensor([-1,1,1]).to(shape.device)
        shape = torch.cat([verts_seam, verts_one_side, verts_other_side], 2)
        return shape

    def get_deformed_mesh(self, shape, pose=None, return_shape=False):
        b, f, _, _ = shape.shape
        if pose is not None:
            shape = self.transform_verts(shape, pose)
        mesh = self.meshes.extend(b*f)
        mesh = mesh.update_padded(rearrange(shape, 'b f ... -> (b f) ...'))
        if return_shape:
            return shape, mesh
        else:
            return mesh

    def get_textures(self, tex_im):
        b, f, c, h, w = tex_im.shape

        ## top half texture map in ico_sphere.obj is unused, pad with zeros
        # if 'sym' not in self.cfgs.get('init_shape_obj', ''):
            # tex_im = torch.cat([torch.zeros_like(tex_im), tex_im], 3)
        # tex_im = nn.functional.interpolate(tex_im, (h, w), mode='bilinear', align_corners=False)
        textures = pytorch3d.renderer.TexturesUV(maps=tex_im.view(b*f, *tex_im.shape[2:]).permute(0, 2, 3, 1),  # texture maps are BxHxWx3
                                                 faces_uvs=self.tex_faces_uv.repeat(b*f, 1, 1),
                                                 verts_uvs=self.tex_verts_uv.repeat(b*f, 1, 1))
        return textures

    def render_flow(self, meshes, shape, pose, deformed_shape=None):
        # verts = meshes.verts_padded()  # (B*F)xVx3
        b, f, _, _ = shape.shape
        if f < 2:
            return None

        if deformed_shape is None:
            deformed_shape, meshes = self.get_deformed_mesh(shape.detach(), pose=pose, return_shape=True)
        im_size = torch.FloatTensor([self.image_size, self.image_size]).to(shape.device)  # (w,h)
        verts_2d = self.cameras.transform_points_screen(deformed_shape.view(b*f, *deformed_shape.shape[2:]), im_size.view(1,2).repeat(b*f,1), eps=1e-7)
        verts_2d = verts_2d.view(b, f, *verts_2d.shape[1:])
        verts_flow = verts_2d[:, 1:, :, :2] - verts_2d[:, :-1, :, :2]  # Bx(F-1)xVx(x,y)
        verts_flow = verts_flow / im_size.view(1, 1, 1, 2) * 0.5 + 0.5  # 0~1
        flow_tex = torch.nn.functional.pad(verts_flow, pad=[0, 1, 0, 0, 0, 1])  # BxFxVx3

        # meshes = meshes.detach()  # detach mesh when rendering flow (only texture has gradients)
        # meshes = self.get_deformed_mesh(shape.detach())
        meshes.textures = pytorch3d.renderer.TexturesVertex(verts_features=flow_tex.view(b*f, -1, 3))
        flow = self.image_renderer(meshes_world=meshes, cameras=self.cameras)
        # settings, blend_params = get_soft_rasterizer_settings(image_size=self.image_size, sigma=1e-6, gamma=1e-6, faces_per_pixel=5)
        # flow = self.image_renderer(meshes_world=meshes, cameras=self.cameras, raster_settings=settings, blend_params=blend_params)
        flow = flow.view(b, f, *flow.shape[1:])[:, :-1]  # Bx(F-1)xHxWx3
        flow_mask = (flow[:, :, :, :, 3:] > 0.01).float()
        return (flow[:, :, :, :, :2] - 0.5) * 2 * flow_mask  # Bx(F-1)xHxWx2

    def forward(self, pose, texture, shape, crop_bbox=None, render_flow=True):
        b, f, _ = pose.shape

        ## compensate crop with intrinsics, assuming square crops
        # x0, y0, w, h = crop_bbox.unbind(2)
        # fx = 1 / np.tan(self.fov_w / 2 /180*np.pi)
        # fy = fx
        # sx = w / self.full_size_w
        # sy = sx
        # cx = ((x0+w/2) - (self.full_size_w/2)) / (self.full_size_w/2)  # [0-w] -> [-1,1]
        # cy = ((y0+h/2) - (self.full_size_h/2)) / (self.full_size_w/2)
        # znear = 1
        # zfar = 100
        # v1 = zfar / (zfar - znear)
        # v2 = -(zfar * znear) / (zfar - znear)
        #
        # # K = [[[ fx/sx,  0.0000,  cx/sx,  0.0000],
        # #       [ 0.0000,  fy/sy,  cy/sy,  0.0000],
        # #       [ 0.0000,  0.0000,  v1, v2],
        # #       [ 0.0000,  0.0000,  1.0000,  0.0000]]]
        # zeros = torch.zeros_like(sx)
        # K_row1 = torch.stack([fx/sx,  zeros,  cx/sx,  zeros], 2)
        # K_row2 = torch.stack([zeros,  fy/sy,  cy/sy,  zeros], 2)
        # K_row3 = torch.stack([zeros,  zeros,  zeros+v1,  zeros+v2], 2)
        # K_row4 = torch.stack([zeros,  zeros,  zeros+1,  zeros], 2)
        # K = torch.stack([K_row1, K_row2, K_row3, K_row4], 2)  # BxFx4x4
        # self.crop_cameras = pytorch3d.renderer.FoVPerspectiveCameras(K=K.view(-1, 4, 4), R=self.cameras.R, T=self.cameras.T, device=self.device)
        # # reset znear, zfar to scalar to bypass broadcast bug in pytorch3d blending
        # self.crop_cameras.znear = znear
        # self.crop_cameras.zfar = zfar

        deformed_shape, mesh = self.get_deformed_mesh(shape, pose=pose, return_shape=True)
        if render_flow:
            flow = self.render_flow(mesh, shape, pose, deformed_shape=deformed_shape)  # Bx(F-1)xHxWx2
            # flow = self.render_flow(mesh, shape, pose, deformed_shape=None)  # Bx(F-1)xHxWx2
        else:
            flow = None
        mesh.textures = self.get_textures(texture)
        image = self.image_renderer(meshes_world=mesh, cameras=self.cameras)
        image = image.view(b, f, *image.shape[1:])
        return image, flow, mesh