Spaces:
Sleeping
Sleeping
File size: 13,852 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
# import pytorch3d
# import pytorch3d.loss
# import pytorch3d.renderer
# import pytorch3d.structures
# import pytorch3d.io
# import pytorch3d.transforms
from PIL import Image
from .utils import sphere
from einops import rearrange
def update_camera_pose(cameras, position, at):
cameras.R = pytorch3d.renderer.look_at_rotation(position, at).to(cameras.device)
cameras.T = -torch.bmm(cameras.R.transpose(1, 2), position[:, :, None])[:, :, 0]
def get_soft_rasterizer_settings(image_size, sigma=1e-6, gamma=1e-6, faces_per_pixel=30):
blend_params = pytorch3d.renderer.BlendParams(sigma=sigma, gamma=gamma)
settings = pytorch3d.renderer.RasterizationSettings(
image_size=image_size,
blur_radius=np.log(1. / 1e-4 - 1.) * blend_params.sigma,
faces_per_pixel=faces_per_pixel,
)
return settings, blend_params
class Renderer(nn.Module):
def __init__(self, cfgs):
super().__init__()
self.cfgs = cfgs
self.device = cfgs.get('device', 'cpu')
self.image_size = cfgs.get('out_image_size', 64)
self.full_size_h = cfgs.get('full_size_h', 1080)
self.full_size_w = cfgs.get('full_size_w', 1920)
self.fov_w = cfgs.get('fov_w', 60)
# self.fov_h = cfgs.get('fov_h', 30)
self.fov_h = np.arctan(np.tan(self.fov_w /2 /180*np.pi) / self.full_size_w * self.full_size_h) *2 /np.pi*180
self.crop_fov_approx = cfgs.get('crop_fov_approx', 25)
self.cam_pos_z_offset = cfgs.get('cam_pos_z_offset', 10.)
self.max_range = np.tan(min(self.fov_h, self.fov_w) /2 /180 * np.pi) * self.cam_pos_z_offset
cam_pos = torch.FloatTensor([[0, 0, self.cam_pos_z_offset]]).to(self.device)
cam_at = torch.FloatTensor([[0, 0, 0]]).to(self.device)
self.rot_rep = cfgs.get('rot_rep', 'euler_angle')
# self.cameras = pytorch3d.renderer.FoVPerspectiveCameras(fov=self.crop_fov_approx).to(self.device)
# update_camera_pose(self.cameras, position=cam_pos, at=cam_at)
# self.full_cameras = pytorch3d.renderer.FoVPerspectiveCameras(fov=self.fov_w).to(self.device)
# update_camera_pose(self.full_cameras, position=cam_pos, at=cam_at)
self.image_renderer = self._create_image_renderer()
self.ico_sphere_subdiv = cfgs.get('ico_sphere_subdiv', 2)
self.init_shape_scale_xy = float(cfgs.get('init_shape_scale_xy', 1.))
self.init_shape_scale_z = float(cfgs.get('init_shape_scale_z', 1.))
# init_verts, init_faces, init_aux = pytorch3d.io.load_obj(cfgs['init_shape_obj'], create_texture_atlas=True, device=self.device)
# self.init_verts = init_verts *self.init_shape_scale
# self.meshes = pytorch3d.structures.Meshes(verts=[self.init_verts], faces=[init_faces.verts_idx]).to(self.device)
# self.tex_faces_uv = init_faces.textures_idx.unsqueeze(0)
# self.tex_verts_uv = init_aux.verts_uvs.unsqueeze(0)
# self.texture_atlas = init_aux.texture_atlas.unsqueeze(0)
# self.num_verts_total = init_verts.size(0)
# cmap = plt.cm.get_cmap('hsv', self.num_verts_total)
# verts_texture = cmap(np.random.permutation(self.num_verts_total))[:,:3]
# self.verts_texture = torch.FloatTensor(verts_texture)
# debug_uvtex = cfgs.get('debug_uvtex', None)
# if debug_uvtex is not None:
# face_tex_map = Image.open(debug_uvtex).convert('RGB').resize((512, 512))
# self.face_tex_map = torch.FloatTensor(np.array(face_tex_map)).permute(2,0,1) / 255.
# else:
# self.face_tex_map = None
meshes, aux = sphere.get_symmetric_ico_sphere(subdiv=self.ico_sphere_subdiv, return_tex_uv=True, return_face_tex_map=True, device=self.device)
init_verts = meshes.verts_padded()
self.init_verts = init_verts * torch.FloatTensor([self.init_shape_scale_xy, self.init_shape_scale_xy, self.init_shape_scale_z]).view(1,1,3).to(init_verts.device)
# TODO: is this needed?
self.meshes = meshes.update_padded(init_verts * 0)
self.tex_faces_uv = aux['face_tex_ids'].unsqueeze(0)
self.tex_verts_uv = aux['verts_tex_uv'].unsqueeze(0)
self.face_tex_map = aux['face_tex_map'].permute(2,0,1)
self.tex_map_seam_mask = aux['seam_mask'].permute(2,0,1)
self.num_verts_total = init_verts.size(1)
self.num_verts_seam = aux['num_verts_seam']
self.num_verts_one_side = aux['num_verts_one_side']
# hack to turn off texture symmetry
if cfgs.get('disable_sym_tex', False):
tex_uv_seam1 = self.tex_verts_uv[:,:aux['num_verts_seam']].clone()
tex_uv_seam1[:,:,0] = tex_uv_seam1[:,:,0] /2 + 0.5
tex_uv_side1 = self.tex_verts_uv[:,aux['num_verts_seam']:aux['num_verts_seam']+aux['num_verts_one_side']].clone()
tex_uv_side1[:,:,0] = tex_uv_side1[:,:,0] /2 + 0.5
tex_uv_seam2 = self.tex_verts_uv[:,:aux['num_verts_seam']].clone()
tex_uv_seam2[:,:,0] = tex_uv_seam2[:,:,0] /2
tex_uv_side2 = self.tex_verts_uv[:,aux['num_verts_seam']+aux['num_verts_one_side']:].clone()
tex_uv_side2[:,:,0] = tex_uv_side2[:,:,0] /2
self.tex_verts_uv = torch.cat([tex_uv_seam1, tex_uv_side1, tex_uv_side2, tex_uv_seam2], 1)
num_faces = self.tex_faces_uv.shape[1]
face_tex_ids1 = self.tex_faces_uv[:, :num_faces//2].clone()
face_tex_ids2 = self.tex_faces_uv[:, num_faces//2:].clone()
face_tex_ids2[face_tex_ids2 < aux['num_verts_seam']] += aux['num_verts_seam'] + 2*aux['num_verts_one_side']
self.tex_faces_uv = torch.cat([face_tex_ids1, face_tex_ids2], 1)
self.face_tex_map = torch.cat([self.face_tex_map, self.face_tex_map.flip(2)], 2)
self.tex_map_seam_mask = torch.cat([self.tex_map_seam_mask, self.tex_map_seam_mask.flip(2)], 2)
def _create_silhouette_renderer(self):
settings, blend_params = get_soft_rasterizer_settings(self.image_size)
return pytorch3d.renderer.MeshRenderer(
rasterizer=pytorch3d.renderer.MeshRasterizer(cameras=self.cameras, raster_settings=settings),
shader=pytorch3d.renderer.SoftSilhouetteShader(cameras=self.cameras, blend_params=blend_params)
)
def _create_image_renderer(self):
settings, blend_params = get_soft_rasterizer_settings(self.image_size)
lights = pytorch3d.renderer.DirectionalLights(device=self.device,
ambient_color=((1., 1., 1.),),
diffuse_color=((0., 0., 0.),),
specular_color=((0., 0., 0.),),
direction=((0, 1, 0),))
return pytorch3d.renderer.MeshRenderer(
rasterizer=pytorch3d.renderer.MeshRasterizer(cameras=self.cameras, raster_settings=settings),
shader=pytorch3d.renderer.SoftPhongShader(device=self.device, lights=lights, cameras=self.cameras, blend_params=blend_params)
)
def transform_verts(self, verts, pose):
b, f, _ = pose.shape
if self.rot_rep == 'euler_angle' or self.rot_rep == 'soft_calss':
rot_mat = pytorch3d.transforms.euler_angles_to_matrix(pose[...,:3].view(-1,3), convention='XYZ')
tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
elif self.rot_rep == 'quaternion':
rot_mat = pytorch3d.transforms.quaternion_to_matrix(pose[...,:4].view(-1,4))
tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
elif self.rot_rep == 'lookat':
rot_mat = pose[...,:9].view(-1,3,3)
tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
else:
raise NotImplementedError
tsf = tsf.compose(pytorch3d.transforms.Translate(pose[...,-3:].view(-1,3), device=pose.device))
new_verts = tsf.transform_points(verts.view(b*f, *verts.shape[2:]))
return new_verts.view(b, f, *new_verts.shape[1:])
# def transform_mesh(self, mesh, pose):
# mesh_verts = mesh.verts_padded()
# new_mesh_verts = self.transform_verts(mesh_verts, pose)
# new_mesh = mesh.update_padded(new_mesh_verts)
# return new_mesh
def symmetrize_shape(self, shape):
verts_seam = shape[:,:,:self.num_verts_seam] * torch.FloatTensor([0,1,1]).to(shape.device)
verts_one_side = shape[:,:,self.num_verts_seam:self.num_verts_seam+self.num_verts_one_side] * torch.FloatTensor([1,1,1]).to(shape.device)
verts_other_side = verts_one_side * torch.FloatTensor([-1,1,1]).to(shape.device)
shape = torch.cat([verts_seam, verts_one_side, verts_other_side], 2)
return shape
def get_deformed_mesh(self, shape, pose=None, return_shape=False):
b, f, _, _ = shape.shape
if pose is not None:
shape = self.transform_verts(shape, pose)
mesh = self.meshes.extend(b*f)
mesh = mesh.update_padded(rearrange(shape, 'b f ... -> (b f) ...'))
if return_shape:
return shape, mesh
else:
return mesh
def get_textures(self, tex_im):
b, f, c, h, w = tex_im.shape
## top half texture map in ico_sphere.obj is unused, pad with zeros
# if 'sym' not in self.cfgs.get('init_shape_obj', ''):
# tex_im = torch.cat([torch.zeros_like(tex_im), tex_im], 3)
# tex_im = nn.functional.interpolate(tex_im, (h, w), mode='bilinear', align_corners=False)
textures = pytorch3d.renderer.TexturesUV(maps=tex_im.view(b*f, *tex_im.shape[2:]).permute(0, 2, 3, 1), # texture maps are BxHxWx3
faces_uvs=self.tex_faces_uv.repeat(b*f, 1, 1),
verts_uvs=self.tex_verts_uv.repeat(b*f, 1, 1))
return textures
def render_flow(self, meshes, shape, pose, deformed_shape=None):
# verts = meshes.verts_padded() # (B*F)xVx3
b, f, _, _ = shape.shape
if f < 2:
return None
if deformed_shape is None:
deformed_shape, meshes = self.get_deformed_mesh(shape.detach(), pose=pose, return_shape=True)
im_size = torch.FloatTensor([self.image_size, self.image_size]).to(shape.device) # (w,h)
verts_2d = self.cameras.transform_points_screen(deformed_shape.view(b*f, *deformed_shape.shape[2:]), im_size.view(1,2).repeat(b*f,1), eps=1e-7)
verts_2d = verts_2d.view(b, f, *verts_2d.shape[1:])
verts_flow = verts_2d[:, 1:, :, :2] - verts_2d[:, :-1, :, :2] # Bx(F-1)xVx(x,y)
verts_flow = verts_flow / im_size.view(1, 1, 1, 2) * 0.5 + 0.5 # 0~1
flow_tex = torch.nn.functional.pad(verts_flow, pad=[0, 1, 0, 0, 0, 1]) # BxFxVx3
# meshes = meshes.detach() # detach mesh when rendering flow (only texture has gradients)
# meshes = self.get_deformed_mesh(shape.detach())
meshes.textures = pytorch3d.renderer.TexturesVertex(verts_features=flow_tex.view(b*f, -1, 3))
flow = self.image_renderer(meshes_world=meshes, cameras=self.cameras)
# settings, blend_params = get_soft_rasterizer_settings(image_size=self.image_size, sigma=1e-6, gamma=1e-6, faces_per_pixel=5)
# flow = self.image_renderer(meshes_world=meshes, cameras=self.cameras, raster_settings=settings, blend_params=blend_params)
flow = flow.view(b, f, *flow.shape[1:])[:, :-1] # Bx(F-1)xHxWx3
flow_mask = (flow[:, :, :, :, 3:] > 0.01).float()
return (flow[:, :, :, :, :2] - 0.5) * 2 * flow_mask # Bx(F-1)xHxWx2
def forward(self, pose, texture, shape, crop_bbox=None, render_flow=True):
b, f, _ = pose.shape
## compensate crop with intrinsics, assuming square crops
# x0, y0, w, h = crop_bbox.unbind(2)
# fx = 1 / np.tan(self.fov_w / 2 /180*np.pi)
# fy = fx
# sx = w / self.full_size_w
# sy = sx
# cx = ((x0+w/2) - (self.full_size_w/2)) / (self.full_size_w/2) # [0-w] -> [-1,1]
# cy = ((y0+h/2) - (self.full_size_h/2)) / (self.full_size_w/2)
# znear = 1
# zfar = 100
# v1 = zfar / (zfar - znear)
# v2 = -(zfar * znear) / (zfar - znear)
#
# # K = [[[ fx/sx, 0.0000, cx/sx, 0.0000],
# # [ 0.0000, fy/sy, cy/sy, 0.0000],
# # [ 0.0000, 0.0000, v1, v2],
# # [ 0.0000, 0.0000, 1.0000, 0.0000]]]
# zeros = torch.zeros_like(sx)
# K_row1 = torch.stack([fx/sx, zeros, cx/sx, zeros], 2)
# K_row2 = torch.stack([zeros, fy/sy, cy/sy, zeros], 2)
# K_row3 = torch.stack([zeros, zeros, zeros+v1, zeros+v2], 2)
# K_row4 = torch.stack([zeros, zeros, zeros+1, zeros], 2)
# K = torch.stack([K_row1, K_row2, K_row3, K_row4], 2) # BxFx4x4
# self.crop_cameras = pytorch3d.renderer.FoVPerspectiveCameras(K=K.view(-1, 4, 4), R=self.cameras.R, T=self.cameras.T, device=self.device)
# # reset znear, zfar to scalar to bypass broadcast bug in pytorch3d blending
# self.crop_cameras.znear = znear
# self.crop_cameras.zfar = zfar
deformed_shape, mesh = self.get_deformed_mesh(shape, pose=pose, return_shape=True)
if render_flow:
flow = self.render_flow(mesh, shape, pose, deformed_shape=deformed_shape) # Bx(F-1)xHxWx2
# flow = self.render_flow(mesh, shape, pose, deformed_shape=None) # Bx(F-1)xHxWx2
else:
flow = None
mesh.textures = self.get_textures(texture)
image = self.image_renderer(meshes_world=mesh, cameras=self.cameras)
image = image.view(b, f, *image.shape[1:])
return image, flow, mesh
|