File size: 6,998 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.models as models
from typing import Union, List, Tuple
import os
import video3d.utils.misc as misc
import torch.nn.functional as F


class Lift_Encoder(nn.Module):
    def __init__(
        self,
        cin,
        feat_dim,
        grid_scale=7.,
        grid_size=32,
        optim_latent=False,
        img_size=256,
        with_z_feature=False,
        cam_pos_z_offset=10.
    ):
        super().__init__()

        '''
        unproject the input feature map to tri-plane, each plane is (-1, -1)*grid_scale to (1, 1)*scale
        '''
        self.cin = cin
        self.nf = feat_dim
        self.grid_scale = grid_scale
        self.grid_size = grid_size
        self.img_size = img_size
        self.with_z_feature = with_z_feature
        self.cam_pos_z_offset = cam_pos_z_offset

        self.feature_projector = nn.Linear(cin, feat_dim, bias=False)

        self.plane_latent = None
        if optim_latent:
            self.optim_latent = nn.Parameter(torch.rand(3, feat_dim, grid_size, grid_size))
        else:
            self.optim_latent = None

        if with_z_feature:
            self.conv_bottleneck = nn.Conv2d(feat_dim+1, feat_dim, kernel_size=3, stride=1, padding=1, dilation=1, padding_mode="replicate")
        else:
            self.conv_bottleneck = nn.Conv2d(feat_dim, feat_dim, kernel_size=3, stride=1, padding=1, dilation=1, padding_mode="replicate")
        
        #TODO: implement an upsampler for input feature map here?
        self.conv_1 = nn.Conv2d(feat_dim, 4*feat_dim, kernel_size=3, stride=1, padding=1, dilation=1, padding_mode="replicate")
        self.conv_2 = nn.Conv2d(feat_dim, 4*feat_dim, kernel_size=3, stride=1, padding=1, dilation=1, padding_mode="replicate")
        self.up = nn.PixelShuffle(2)

        self.conv_enc = nn.Conv2d(feat_dim, feat_dim // 2, kernel_size=3, stride=1, padding=1, dilation=1, padding_mode="replicate")
        self.conv_dec = nn.Conv2d(feat_dim // 2, feat_dim, kernel_size=3, stride=1, padding=1, dilation=1, padding_mode="replicate")

        self.feature_fusion = nn.Linear(3*feat_dim, feat_dim, bias=False)

    def get_coords(self, grid_size):
        with torch.no_grad():
            lines = torch.arange(0, grid_size)
            grids_x, grids_y = torch.meshgrid([lines, lines], indexing="ij")
            grids = torch.stack([grids_x, grids_y], dim=-1)
            grids = (grids - self.grid_size // 2) / (self.grid_size // 2)
            grids = grids * self.grid_scale

            plane_z0 = torch.cat([grids, torch.zeros(list(grids.shape[:-1]) + [1])], dim=-1)  # [S, S, 3]
            plane_y0 = plane_z0.clone()[..., [0, 2, 1]]
            plane_x0 = plane_z0.clone()[..., [2, 0, 1]]
        
        planes = torch.stack([plane_x0, plane_y0, plane_z0], dim=0)
        return planes # [3, S, S, 3]
    
    def get_uv_z(self, pts, mvp):
        cam4 = torch.matmul(torch.nn.functional.pad(pts, pad=(0,1), mode='constant', value=1.0), torch.transpose(mvp, 1, 2))
        cam3 = cam4[..., :3] / cam4[..., 3:4]
        cam_uv = cam3[..., :2]
        # cam_uv = cam_uv.detach()
        cam_depth = cam3 + torch.FloatTensor([0, 0, self.cam_pos_z_offset]).to(pts.device).view(1, 1, 3)
        cam_depth = cam_depth / self.grid_scale * 2
        cam_depth = cam_depth[..., 2:3]

        return cam_uv, cam_depth
    
    def unproject(self, feature_map, mvp):
        '''
        feature_map: [B, C, h, w]
        mvp: [B, 4, 4]
        '''
        self.plane_latent = None
        bs, C, h, w = feature_map.shape
        device = feature_map.device
        feature_map = self.feature_projector(feature_map.permute(0, 2, 3, 1).reshape(-1, C)).reshape(bs, h, w, self.nf).permute(0, 3, 1, 2)

        feature_map = self.up(self.conv_1(feature_map))
        feature_map = self.up(self.conv_2(feature_map))

        plane_coords = self.get_coords(self.grid_size)
        plane_coords = plane_coords.unsqueeze(0).repeat(bs, 1, 1, 1, 1)
        plane_coords = plane_coords.to(device)
        
        plane_pts = plane_coords.reshape(bs, -1, 3)  # [B, N_POINTS, 3]
        plane_uv, plane_z = self.get_uv_z(plane_pts, mvp)
        plane_uv = plane_uv.detach()
        plane_z = plane_z.detach()

        nP = plane_pts.shape[1]

        plane_feature = F.grid_sample(feature_map, plane_uv.reshape(bs, 1, nP, 2), mode="bilinear", padding_mode="zeros").squeeze(dim=-2).permute(0, 2, 1)
        if self.with_z_feature:
            plane_feature = torch.cat([plane_feature, plane_z], dim=-1)
        
        plane_feature = plane_feature.reshape(plane_feature.shape[0], 3, self.grid_size, self.grid_size, plane_feature.shape[-1])
        
        return plane_feature

    def conv_plane(self, plane_feature):
        bs, _, nh, nw, nC = plane_feature.shape
        plane_feature = plane_feature.reshape(-1, nh, nw, nC).permute(0, 3, 1, 2)  # [bs*3, nC, nh, nw]
        
        plane_feature = self.conv_bottleneck(plane_feature)
        x = self.conv_dec(self.conv_enc(plane_feature))
        out = x + plane_feature
        out = out.reshape(bs, 3, out.shape[-3], out.shape[-2], out.shape[-1])

        if self.optim_latent is not None:
            optim_latent = self.optim_latent.unsqueeze(0).repeat(bs, 1, 1, 1, 1)
            out = out + optim_latent

        return out
    
    def sample_plane(self, pts, feat):
        '''
        pts: [B, K, 3]
        feat: [B, 3, C, h, w]
        '''
        pts_x, pts_y, pts_z = pts.unbind(dim=-1)

        pts_x0 = torch.stack([pts_y, pts_z], dim=-1)
        pts_y0 = torch.stack([pts_x, pts_z], dim=-1)
        pts_z0 = torch.stack([pts_x, pts_y], dim=-1)

        feat_x0 = F.grid_sample(feat[:, 0, :, :], pts_x0.unsqueeze(1), mode="bilinear", padding_mode="border").squeeze(-2).permute(0, 2, 1)
        feat_y0 = F.grid_sample(feat[:, 0, :, :], pts_y0.unsqueeze(1), mode="bilinear", padding_mode="border").squeeze(-2).permute(0, 2, 1)
        feat_z0 = F.grid_sample(feat[:, 0, :, :], pts_z0.unsqueeze(1), mode="bilinear", padding_mode="border").squeeze(-2).permute(0, 2, 1)

        pts_feat = torch.cat([feat_x0, feat_y0, feat_z0], dim=-1)
        return pts_feat

    def forward(self, feature_map, mvp, pts, inference="unproject"):
        '''
        inference = "unproject" or "sample"
        '''
        assert inference in ["unproject", "sample"]
        if inference == "unproject":
            plane_feature = self.unproject(feature_map, mvp)
            plane_feature = self.conv_plane(plane_feature)

            self.plane_latent = plane_feature.clone().detach()  # this is just for test case
        
        if inference == "unproject":
            feat_to_sample = plane_feature
        else:
            new_bs = pts.shape[0]
            feat_to_sample = self.plane_latent[:new_bs]
        
        pts_feature = self.sample_plane(pts, feat_to_sample)
        pts_feature = self.feature_fusion(pts_feature)  # [B, K, C]

        return pts_feature