Spaces:
Sleeping
Sleeping
File size: 8,699 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Cages code used from https://github.com/yifita/deep_cage
import torch
import numpy as np
import trimesh
def deform_with_MVC(cage, cage_deformed, cage_face, query, verbose=False):
"""
cage (B,C,3)
cage_deformed (B,C,3)
cage_face (B,F,3) int64
query (B,Q,3)
"""
weights, weights_unnormed = mean_value_coordinates_3D(query, cage, cage_face, verbose=True)
# weights = weights.detach()
deformed = torch.sum(weights.unsqueeze(-1)*cage_deformed.unsqueeze(1), dim=2)
if verbose:
return deformed, weights, weights_unnormed
return deformed
def loadInitCage(template):
init_cage_V, init_cage_F = read_trimesh(template)
init_cage_V = torch.from_numpy(init_cage_V[:,:3].astype(np.float32)).unsqueeze(0)*2.0
init_cage_F = torch.from_numpy(init_cage_F[:,:3].astype(np.int64)).unsqueeze(0)
return init_cage_V, init_cage_F
def read_trimesh(path):
mesh = trimesh.load(path)
return mesh.vertices, mesh.faces
# util functions from pytorch_points
PI = 3.1415927
def normalize_to_box(input):
"""
normalize point cloud to unit bounding box
center = (max - min)/2
scale = max(abs(x))
input: pc [N, P, dim] or [P, dim]
output: pc, centroid, furthest_distance
"""
if len(input.shape) == 2:
axis = 0
P = input.shape[0]
D = input.shape[1]
elif len(input.shape) == 3:
axis = 1
P = input.shape[1]
D = input.shape[2]
if isinstance(input, np.ndarray):
maxP = np.amax(input, axis=axis, keepdims=True)
minP = np.amin(input, axis=axis, keepdims=True)
centroid = (maxP+minP)/2
input = input - centroid
furthest_distance = np.amax(np.abs(input), axis=(axis, -1), keepdims=True)
input = input / furthest_distance
elif isinstance(input, torch.Tensor):
maxP = torch.max(input, dim=axis, keepdim=True)[0]
minP = torch.min(input, dim=axis, keepdim=True)[0]
centroid = (maxP+minP)/2
input = input - centroid
in_shape = list(input.shape[:axis])+[P*D]
furthest_distance = torch.max(torch.abs(input).view(in_shape), dim=axis, keepdim=True)[0]
furthest_distance = furthest_distance.unsqueeze(-1)
input = input / furthest_distance
return input, centroid, furthest_distance
def normalize(tensor, dim=-1):
"""normalize tensor in specified dimension"""
return torch.nn.functional.normalize(tensor, p=2, dim=dim, eps=1e-12, out=None)
def check_values(tensor):
"""return true if tensor doesn't contain NaN or Inf"""
return not (torch.any(torch.isnan(tensor)).item() or torch.any(torch.isinf(tensor)).item())
class ScatterAdd(torch.autograd.Function):
@staticmethod
def forward(ctx, src, idx, dim, out_size, fill=0.0):
out = torch.full(out_size, fill, device=src.device, dtype=src.dtype)
ctx.save_for_backward(idx)
out.scatter_add_(dim, idx, src)
ctx.mark_non_differentiable(idx)
ctx.dim = dim
return out
@staticmethod
def backward(ctx, ograd):
idx, = ctx.saved_tensors
grad = torch.gather(ograd, ctx.dim, idx)
return grad, None, None, None, None
_scatter_add = ScatterAdd.apply
def scatter_add(src, idx, dim, out_size=None, fill=0.0):
if out_size is None:
out_size = list(src.size())
dim_size = idx.max().item()+1
out_size[dim] = dim_size
return _scatter_add(src, idx, dim, out_size, fill)
def mean_value_coordinates_3D(query, vertices, faces, verbose=False):
"""
Tao Ju et.al. MVC for 3D triangle meshes
params:
query (B,P,3)
vertices (B,N,3)
faces (B,F,3)
return:
wj (B,P,N)
"""
B, F, _ = faces.shape
_, P, _ = query.shape
_, N, _ = vertices.shape
# u_i = p_i - x (B,P,N,3)
uj = vertices.unsqueeze(1) - query.unsqueeze(2)
# \|u_i\| (B,P,N,1)
dj = torch.norm(uj, dim=-1, p=2, keepdim=True)
uj = normalize(uj, dim=-1)
# gather triangle B,P,F,3,3
ui = torch.gather(uj.unsqueeze(2).expand(-1,-1,F,-1,-1),
3,
faces.unsqueeze(1).unsqueeze(-1).expand(-1,P,-1,-1,3))
# li = \|u_{i+1}-u_{i-1}\| (B,P,F,3)
li = torch.norm(ui[:,:,:,[1, 2, 0],:] - ui[:, :, :,[2, 0, 1],:], dim=-1, p=2)
eps = 2e-5
li = torch.where(li>=2, li-(li.detach()-(2-eps)), li)
li = torch.where(li<=-2, li-(li.detach()+(2-eps)), li)
# asin(x) is inf at +/-1
# θi = 2arcsin[li/2] (B,P,F,3)
theta_i = 2*torch.asin(li/2)
assert(check_values(theta_i))
# B,P,F,1
h = torch.sum(theta_i, dim=-1, keepdim=True)/2
# wi← sin[θi]d{i−1}d{i+1}
# (B,P,F,3) ci ← (2sin[h]sin[h−θi])/(sin[θ_{i+1}]sin[θ_{i−1}])−1
ci = 2*torch.sin(h)*torch.sin(h-theta_i)/(torch.sin(theta_i[:,:,:,[1, 2, 0]])*torch.sin(theta_i[:,:,:,[2, 0, 1]]))-1
# NOTE: because of floating point ci can be slightly larger than 1, causing problem with sqrt(1-ci^2)
# NOTE: sqrt(x)' is nan for x=0, hence use eps
eps = 1e-5
ci = torch.where(ci>=1, ci-(ci.detach()-(1-eps)), ci)
ci = torch.where(ci<=-1, ci-(ci.detach()+(1-eps)), ci)
# si← sign[det[u1,u2,u3]]sqrt(1-ci^2)
# (B,P,F)*(B,P,F,3)
si = torch.sign(torch.det(ui)).unsqueeze(-1)*torch.sqrt(1-ci**2) # sqrt gradient nan for 0
assert(check_values(si))
# (B,P,F,3)
di = torch.gather(dj.unsqueeze(2).squeeze(-1).expand(-1,-1,F,-1), 3,
faces.unsqueeze(1).expand(-1,P,-1,-1))
assert(check_values(di))
# if si.requires_grad:
# vertices.register_hook(save_grad("mvc/dv"))
# li.register_hook(save_grad("mvc/dli"))
# theta_i.register_hook(save_grad("mvc/dtheta"))
# ci.register_hook(save_grad("mvc/dci"))
# si.register_hook(save_grad("mvc/dsi"))
# di.register_hook(save_grad("mvc/ddi"))
# wi← (θi −c[i+1]θ[i−1] −c[i−1]θ[i+1])/(disin[θi+1]s[i−1])
# B,P,F,3
# CHECK is there a 2* in the denominator
wi = (theta_i-ci[:,:,:,[1,2,0]]*theta_i[:,:,:,[2,0,1]]-ci[:,:,:,[2,0,1]]*theta_i[:,:,:,[1,2,0]])/(di*torch.sin(theta_i[:,:,:,[1,2,0]])*si[:,:,:,[2,0,1]])
# if ∃i,|si| ≤ ε, set wi to 0. coplaner with T but outside
# ignore coplaner outside triangle
# alternative check
# (B,F,3,3)
# triangle_points = torch.gather(vertices.unsqueeze(1).expand(-1,F,-1,-1), 2, faces.unsqueeze(-1).expand(-1,-1,-1,3))
# # (B,P,F,3), (B,1,F,3) -> (B,P,F,1)
# determinant = dot_product(triangle_points[:,:,:,0].unsqueeze(1)-query.unsqueeze(2),
# torch.cross(triangle_points[:,:,:,1]-triangle_points[:,:,:,0],
# triangle_points[:,:,:,2]-triangle_points[:,:,:,0], dim=-1).unsqueeze(1), dim=-1, keepdim=True).detach()
# # (B,P,F,1)
# sqrdist = determinant*determinant / (4 * sqrNorm(torch.cross(triangle_points[:,:,:,1]-triangle_points[:,:,:,0], triangle_points[:,:,:,2]-triangle_points[:,:,:,0], dim=-1), keepdim=True))
wi = torch.where(torch.any(torch.abs(si) <= 1e-5, keepdim=True, dim=-1), torch.zeros_like(wi), wi)
# wi = torch.where(sqrdist <= 1e-5, torch.zeros_like(wi), wi)
# if π −h < ε, x lies on t, use 2D barycentric coordinates
# inside triangle
inside_triangle = (PI-h).squeeze(-1)<1e-4
# set all F for this P to zero
wi = torch.where(torch.any(inside_triangle, dim=-1, keepdim=True).unsqueeze(-1), torch.zeros_like(wi), wi)
# CHECK is it di https://www.cse.wustl.edu/~taoju/research/meanvalue.pdf or li http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.516.1856&rep=rep1&type=pdf
wi = torch.where(inside_triangle.unsqueeze(-1).expand(-1,-1,-1,wi.shape[-1]), torch.sin(theta_i)*di[:,:,:,[2,0,1]]*di[:,:,:,[1,2,0]], wi)
# sum over all faces face -> vertex (B,P,F*3) -> (B,P,N)
wj = scatter_add(wi.reshape(B,P,-1).contiguous(), faces.unsqueeze(1).expand(-1,P,-1,-1).reshape(B,P,-1), 2, out_size=(B,P,N))
# close to vertex (B,P,N)
close_to_point = dj.squeeze(-1) < 1e-8
# set all F for this P to zero
wj = torch.where(torch.any(close_to_point, dim=-1, keepdim=True), torch.zeros_like(wj), wj)
wj = torch.where(close_to_point, torch.ones_like(wj), wj)
# (B,P,1)
sumWj = torch.sum(wj, dim=-1, keepdim=True)
sumWj = torch.where(sumWj==0, torch.ones_like(sumWj), sumWj)
wj_normalised = wj / sumWj
# if wj.requires_grad:
# saved_variables["mvc/wi"] = wi
# wi.register_hook(save_grad("mvc/dwi"))
# wj.register_hook(save_grad("mvc/dwj"))
if verbose:
return wj_normalised, wi
else:
return wj_normalised
|