Spaces:
Sleeping
Sleeping
File size: 16,137 Bytes
98a77e0 f9ae7a0 98a77e0 f9ae7a0 98a77e0 f9ae7a0 98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
import nvdiffrast.torch as dr
from . import util
from . import renderutils as ru
from . import light
from .texture import Texture2D
# ==============================================================================================
# Helper functions
# ==============================================================================================
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all')
# ==============================================================================================
# pixel shader
# ==============================================================================================
def shade(
gb_pos,
gb_geometric_normal,
gb_normal,
gb_tangent,
gb_tex_pos,
gb_texc,
gb_texc_deriv,
w2c,
view_pos,
lgt,
material,
bsdf,
feat,
two_sided_shading,
delta_xy_interp=None,
dino_pred=None,
class_vector=None,
im_features_map=None,
mvp=None
):
################################################################################
# Texture lookups
################################################################################
perturbed_nrm = None
# Combined texture, used for MLPs because lookups are expensive
# all_tex_jitter = material.sample(gb_tex_pos + torch.normal(mean=0, std=0.01, size=gb_tex_pos.shape, device="cuda"), feat=feat)
if isinstance(material, Texture2D):
all_tex = material.sample(gb_texc, gb_texc_deriv)
elif material is not None:
if im_features_map is None:
all_tex = material.sample(gb_tex_pos, feat=feat)
else:
all_tex = material.sample(gb_tex_pos, feat=feat, feat_map=im_features_map, mvp=mvp, w2c=w2c, deform_xyz=gb_pos)
else:
all_tex = torch.ones(*gb_pos.shape[:-1], 9, device=gb_pos.device)
kd, ks, perturbed_nrm = all_tex[..., :3], all_tex[..., 3:6], all_tex[..., 6:9]
# Compute albedo (kd) gradient, used for material regularizer
# kd_grad = torch.sum(torch.abs(all_tex_jitter[..., :-6] - all_tex[..., :-6]), dim=-1, keepdim=True) /
if dino_pred is not None and class_vector is None:
# DOR: predive the dino value using x,y,z, we would concatenate the label vector.
# trained together, generated image as the supervision for the one-hot-vector.
dino_feat_im_pred = dino_pred.sample(gb_tex_pos)
# dino_feat_im_pred = dino_pred.sample(gb_tex_pos.detach())
if dino_pred is not None and class_vector is not None:
dino_feat_im_pred = dino_pred.sample(gb_tex_pos, feat=class_vector)
# else:
# kd_jitter = material['kd'].sample(gb_texc + torch.normal(mean=0, std=0.005, size=gb_texc.shape, device="cuda"), gb_texc_deriv)
# kd = material['kd'].sample(gb_texc, gb_texc_deriv)
# ks = material['ks'].sample(gb_texc, gb_texc_deriv)[..., 0:3] # skip alpha
# if 'normal' in material:
# perturbed_nrm = material['normal'].sample(gb_texc, gb_texc_deriv)
# kd_grad = torch.sum(torch.abs(kd_jitter[..., 0:3] - kd[..., 0:3]), dim=-1, keepdim=True) / 3
# Separate kd into alpha and color, default alpha = 1
# alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1])
# kd = kd[..., 0:3]
alpha = torch.ones_like(kd[..., 0:1])
################################################################################
# Normal perturbation & normal bend
################################################################################
if material is None or isinstance(material, Texture2D) or not material.perturb_normal:
perturbed_nrm = None
gb_normal = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=two_sided_shading, opengl=True, use_python=True)
# if two_sided_shading:
# view_vec = util.safe_normalize(view_pos - gb_pos, -1)
# gb_normal = torch.where(torch.sum(gb_geometric_normal * view_vec, -1, keepdim=True) > 0, gb_geometric_normal, -gb_geometric_normal)
# else:
# gb_normal = gb_geometric_normal
b, h, w, _ = gb_normal.shape
cam_normal = util.safe_normalize(torch.matmul(gb_normal.view(b, -1, 3), w2c[:,:3,:3].transpose(2,1))).view(b, h, w, 3)
################################################################################
# Evaluate BSDF
################################################################################
assert bsdf is not None or material.bsdf is not None, "Material must specify a BSDF type"
bsdf = bsdf if bsdf is not None else material.bsdf
shading = None
if bsdf == 'pbr':
if isinstance(lgt, light.EnvironmentLight):
shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=True)
else:
assert False, "Invalid light type"
elif bsdf == 'diffuse':
if lgt is None:
shaded_col = kd
elif isinstance(lgt, light.EnvironmentLight):
shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=False)
# elif isinstance(lgt, light.DirectionalLight):
# shaded_col, shading = lgt.shade(feat, kd, cam_normal)
# else:
# assert False, "Invalid light type"
else:
shaded_col, shading = lgt.shade(feat, kd, cam_normal)
elif bsdf == 'normal':
shaded_col = (gb_normal + 1.0) * 0.5
elif bsdf == 'geo_normal':
shaded_col = (gb_geometric_normal + 1.0) * 0.5
elif bsdf == 'tangent':
shaded_col = (gb_tangent + 1.0) * 0.5
elif bsdf == 'kd':
shaded_col = kd
elif bsdf == 'ks':
shaded_col = ks
else:
assert False, "Invalid BSDF '%s'" % bsdf
# Return multiple buffers
buffers = {
'kd' : torch.cat((kd, alpha), dim=-1),
'shaded' : torch.cat((shaded_col, alpha), dim=-1),
# 'kd_grad' : torch.cat((kd_grad, alpha), dim=-1),
# 'occlusion' : torch.cat((ks[..., :1], alpha), dim=-1),
}
if dino_pred is not None:
buffers['dino_feat_im_pred'] = torch.cat((dino_feat_im_pred, alpha), dim=-1)
if delta_xy_interp is not None:
buffers['flow'] = torch.cat((delta_xy_interp, alpha), dim=-1)
if shading is not None:
buffers['shading'] = torch.cat((shading, alpha), dim=-1)
return buffers
# ==============================================================================================
# Render a depth slice of the mesh (scene), some limitations:
# - Single light
# - Single material
# ==============================================================================================
def render_layer(
rast,
rast_deriv,
mesh,
w2c,
view_pos,
material,
lgt,
resolution,
spp,
msaa,
bsdf,
feat,
prior_mesh,
two_sided_shading,
render_flow,
delta_xy=None,
dino_pred=None,
class_vector=None,
im_features_map=None,
mvp=None
):
full_res = [resolution[0]*spp, resolution[1]*spp]
if prior_mesh is None:
prior_mesh = mesh
################################################################################
# Rasterize
################################################################################
# Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution
if spp > 1 and msaa:
rast_out_s = util.scale_img_nhwc(rast, resolution, mag='nearest', min='nearest')
rast_out_deriv_s = util.scale_img_nhwc(rast_deriv, resolution, mag='nearest', min='nearest') * spp
else:
rast_out_s = rast
rast_out_deriv_s = rast_deriv
if render_flow:
delta_xy_interp, _ = interpolate(delta_xy, rast_out_s, mesh.t_pos_idx[0].int())
else:
delta_xy_interp = None
################################################################################
# Interpolate attributes
################################################################################
# Interpolate world space position
gb_pos, _ = interpolate(mesh.v_pos, rast_out_s, mesh.t_pos_idx[0].int())
# Compute geometric normals. We need those because of bent normals trick (for bump mapping)
v0 = mesh.v_pos[:, mesh.t_pos_idx[0, :, 0], :]
v1 = mesh.v_pos[:, mesh.t_pos_idx[0, :, 1], :]
v2 = mesh.v_pos[:, mesh.t_pos_idx[0, :, 2], :]
face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0, dim=-1))
num_faces = face_normals.shape[1]
face_normal_indices = (torch.arange(0, num_faces, dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3)
gb_geometric_normal, _ = interpolate(face_normals, rast_out_s, face_normal_indices.int())
# Compute tangent space
assert mesh.v_nrm is not None and mesh.v_tng is not None
gb_normal, _ = interpolate(mesh.v_nrm, rast_out_s, mesh.t_nrm_idx[0].int())
gb_tangent, _ = interpolate(mesh.v_tng, rast_out_s, mesh.t_tng_idx[0].int()) # Interpolate tangents
# Texture coordinate
assert mesh.v_tex is not None
gb_texc, gb_texc_deriv = interpolate(mesh.v_tex, rast_out_s, mesh.t_tex_idx[0].int(), rast_db=rast_out_deriv_s)
################################################################################
# Shade
################################################################################
gb_tex_pos, _ = interpolate(prior_mesh.v_pos, rast_out_s, mesh.t_pos_idx[0].int())
buffers = shade(gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_tex_pos, gb_texc, gb_texc_deriv, w2c, view_pos, lgt, material, bsdf, feat=feat, two_sided_shading=two_sided_shading, delta_xy_interp=delta_xy_interp, dino_pred=dino_pred, class_vector=class_vector, im_features_map=im_features_map, mvp=mvp)
################################################################################
# Prepare output
################################################################################
# Scale back up to visibility resolution if using MSAA
if spp > 1 and msaa:
for key in buffers.keys():
buffers[key] = util.scale_img_nhwc(buffers[key], full_res, mag='nearest', min='nearest')
# Return buffers
return buffers
# ==============================================================================================
# Render a depth peeled mesh (scene), some limitations:
# - Single light
# - Single material
# ==============================================================================================
def render_mesh(
ctx,
mesh,
mtx_in,
w2c,
view_pos,
material,
lgt,
resolution,
spp = 1,
num_layers = 1,
msaa = False,
background = None,
bsdf = None,
feat = None,
prior_mesh = None,
two_sided_shading = True,
render_flow = False,
dino_pred = None,
class_vector = None,
num_frames = None,
im_features_map = None
):
def prepare_input_vector(x):
x = torch.tensor(x, dtype=torch.float32, device='cuda') if not torch.is_tensor(x) else x
return x[:, None, None, :] if len(x.shape) == 2 else x
def composite_buffer(key, layers, background, antialias):
accum = background
for buffers, rast in reversed(layers):
alpha = (rast[..., -1:] > 0).float() * buffers[key][..., -1:]
accum = torch.lerp(accum, torch.cat((buffers[key][..., :-1], torch.ones_like(buffers[key][..., -1:])), dim=-1), alpha)
if antialias:
accum = dr.antialias(accum.contiguous(), rast, v_pos_clip, mesh.t_pos_idx[0].int())
return accum
assert mesh.t_pos_idx.shape[1] > 0, "Got empty training triangle mesh (unrecoverable discontinuity)"
assert background is None or (background.shape[1] == resolution[0] and background.shape[2] == resolution[1])
full_res = [resolution[0] * spp, resolution[1] * spp]
# Convert numpy arrays to torch tensors
mtx_in = torch.tensor(mtx_in, dtype=torch.float32, device='cuda') if not torch.is_tensor(mtx_in) else mtx_in
view_pos = prepare_input_vector(view_pos) # Shape: (B, 1, 1, 3)
# clip space transform
v_pos_clip = ru.xfm_points(mesh.v_pos, mtx_in, use_python=True)
# render flow
if render_flow:
v_pos_clip2 = v_pos_clip[..., :2] / v_pos_clip[..., -1:]
v_pos_clip2 = v_pos_clip2.view(-1, num_frames, *v_pos_clip2.shape[1:])
delta_xy = v_pos_clip2[:, 1:] - v_pos_clip2[:, :-1]
delta_xy = torch.cat([delta_xy, torch.zeros_like(delta_xy[:, :1])], dim=1)
delta_xy = delta_xy.view(-1, *delta_xy.shape[2:])
else:
delta_xy = None
# Render all layers front-to-back
layers = []
with dr.DepthPeeler(ctx, v_pos_clip, mesh.t_pos_idx[0].int(), full_res) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
rendered = render_layer(rast, db, mesh, w2c, view_pos, material, lgt, resolution, spp, msaa, bsdf, feat=feat, prior_mesh=prior_mesh, two_sided_shading=two_sided_shading, render_flow=render_flow, delta_xy=delta_xy, dino_pred=dino_pred, class_vector=class_vector, im_features_map=im_features_map, mvp=mtx_in)
layers += [(rendered, rast)]
# Setup background
if background is not None:
if spp > 1:
background = util.scale_img_nhwc(background, full_res, mag='nearest', min='nearest')
background = torch.cat((background, torch.zeros_like(background[..., 0:1])), dim=-1)
else:
background = torch.zeros(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda')
# Composite layers front-to-back
out_buffers = {}
for key in layers[0][0].keys():
antialias = key in ['shaded', 'dino_feat_im_pred', 'flow']
bg = background if key in ['shaded'] else torch.zeros_like(layers[0][0][key])
accum = composite_buffer(key, layers, bg, antialias)
# Downscale to framebuffer resolution. Use avg pooling
out_buffers[key] = util.avg_pool_nhwc(accum, spp) if spp > 1 else accum
return out_buffers
# ==============================================================================================
# Render UVs
# ==============================================================================================
def render_uv(ctx, mesh, resolution, mlp_texture, feat=None, prior_shape=None):
# clip space transform
uv_clip = mesh.v_tex * 2.0 - 1.0
# pad to four component coordinate
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[...,0:1]), torch.ones_like(uv_clip[...,0:1])), dim = -1)
# rasterize
rast, _ = dr.rasterize(ctx, uv_clip4, mesh.t_tex_idx[0].int(), resolution)
# Interpolate world space position
if prior_shape is not None:
gb_pos, _ = interpolate(prior_shape.v_pos, rast, mesh.t_pos_idx[0].int())
else:
gb_pos, _ = interpolate(mesh.v_pos, rast, mesh.t_pos_idx[0].int())
# Sample out textures from MLP
all_tex = mlp_texture.sample(gb_pos, feat=feat)
assert all_tex.shape[-1] == 9 or all_tex.shape[-1] == 10, "Combined kd_ks_normal must be 9 or 10 channels"
perturbed_nrm = all_tex[..., -3:]
return (rast[..., -1:] > 0).float(), all_tex[..., :-6], all_tex[..., -6:-3], util.safe_normalize(perturbed_nrm)
|