File size: 28,498 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import os
import os.path as osp
import glob
from datetime import datetime
import random
import torch
import video3d.utils.meters as meters
import video3d.utils.misc as misc

from video3d.dataloaders_ddp import get_sequence_loader_quadrupeds

def sample_frames(batch, num_sample_frames, iteration, stride=1):
    ## window slicing sampling
    images, masks, flows, bboxs, bg_image, seq_idx, frame_idx = batch
    num_seqs, total_num_frames = images.shape[:2]
    # start_frame_idx = iteration % (total_num_frames - num_sample_frames +1)

    ## forward and backward
    num_windows = total_num_frames - num_sample_frames +1
    start_frame_idx = (iteration * stride) % (2*num_windows)
    ## x' = (2n-1)/2 - |(2n-1)/2 - x| : 0,1,2,3,4,5 -> 0,1,2,2,1,0
    mid_val = (2*num_windows -1) /2
    start_frame_idx = int(mid_val - abs(mid_val -start_frame_idx))

    new_batch = images[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        masks[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        flows[:, start_frame_idx:start_frame_idx+num_sample_frames-1], \
        bboxs[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        bg_image, \
        seq_idx, \
        frame_idx[:, start_frame_idx:start_frame_idx+num_sample_frames]
    return new_batch


def indefinite_generator(loader):
    while True:
        for x in loader:
            yield x

def indefinite_generator_from_list(loaders):
    while True:
        random_idx = random.randint(0, len(loaders)-1)
        for x in loaders[random_idx]:
            yield x
            break

def definite_generator(loader):
    for x in loader:
        yield x
    while True:
        yield None


class TrainerDDP:
    def __init__(self, cfgs, model):
        self.cfgs = cfgs
        self.is_dry_run = cfgs.get('is_dry_run', False)

        self.rank = cfgs.get('rank', 0)
        self.world_size = cfgs.get('world_size', 1)
        self.use_ddp = cfgs.get('use_ddp', True)

        self.device = cfgs.get('device', 'cpu')
        self.num_epochs = cfgs.get('num_epochs', 1)
        
        # The logic is, if the num_iterations is set in the cfg
        # for any 'epoch' in cfg, I rescale it to (epoch / 120) * epoch_now, as in horse exp
        # for any 'iter' in cfg, I just keep them the same
        self.num_iterations = cfgs.get('num_iterations', 0)
        if self.num_iterations != 0:
            self.use_total_iterations = True
        else:
            self.use_total_iterations = False

        self.num_sample_frames = cfgs.get('num_sample_frames', 100)
        self.sample_frame_stride = cfgs.get('sample_frame_stride', 1)
        self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
        self.save_checkpoint_freq = cfgs.get('save_checkpoint_freq', 1)
        self.keep_num_checkpoint = cfgs.get('keep_num_checkpoint', 2)  # -1 for keeping all checkpoints
        self.resume = cfgs.get('resume', True)
        self.reset_epoch = cfgs.get('reset_epoch', False)
        self.finetune_ckpt = cfgs.get('finetune_ckpt', None)
        # print('!!!!!!!!!!!!!!!!!!!!!!!!!!')
        print(f'reset epoch: {self.reset_epoch}')
        # print('!!!!!!!!!!!!!!!!!!!!!!!!!!')
        self.use_logger = cfgs.get('use_logger', True)
        self.log_freq_images = cfgs.get('log_freq_images', 1000)
        self.log_train_images = cfgs.get('log_train_images', False)
        self.log_freq_losses = cfgs.get('log_freq_losses', 100)
        self.visualize_validation = cfgs.get('visualize_validation', False)
        self.fix_viz_batch = cfgs.get('fix_viz_batch', False)
        self.archive_code = cfgs.get('archive_code', True)
        self.checkpoint_name = cfgs.get('checkpoint_name', None)
        self.test_result_dir = cfgs.get('test_result_dir', None)
        self.validate = cfgs.get('validate', False)
        self.current_epoch = 0
        self.logger = None
        self.viz_input = None
        self.dataset = cfgs.get('dataset', 'video')
        self.train_with_cub = cfgs.get('train_with_cub', False)
        self.train_with_kaggle = cfgs.get('train_with_kaggle', False)
        self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)

        self.metrics_trace = meters.MetricsTrace()
        self.make_metrics = lambda m=None: meters.StandardMetrics(m)

        self.batch_size = cfgs.get('batch_size', 64)
        self.in_image_size = cfgs.get('in_image_size', 256)
        self.out_image_size = cfgs.get('out_image_size', 256)
        self.num_workers = cfgs.get('num_workers', 4)
        self.run_train = cfgs.get('run_train', False)
        self.train_data_dir = cfgs.get('train_data_dir', None)
        self.val_data_dir = cfgs.get('val_data_dir', None)
        self.run_test = cfgs.get('run_test', False)
        self.test_data_dir = cfgs.get('test_data_dir', None)
        self.flow_bool = cfgs.get('flow_bool', 0)

        if len(self.train_data_dir) <= 10 and len(self.val_data_dir) <= 10:
            self.train_loader, self.val_loader, self.test_loader = model.get_data_loaders_ddp(cfgs, self.dataset, self.rank, self.world_size, in_image_size=self.in_image_size, out_image_size=self.out_image_size, batch_size=self.batch_size, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.train_data_dir, val_data_dir=self.val_data_dir, test_data_dir=self.test_data_dir, flow_bool=self.flow_bool)
        else:
            # for 128 categories specific training
            self.train_loader, self.val_loader, self.test_loader = self.get_efficient_data_loaders_ddp(
                cfgs,
                self.batch_size,
                self.num_workers,
                self.in_image_size,
                self.out_image_size
            )

        print(self.train_loader, self.val_loader, self.test_loader)
        if self.train_with_cub:
            self.batch_size_cub = cfgs.get('batch_size_cub', 64)
            self.data_dir_cub = cfgs.get('data_dir_cub', None)
            self.train_loader_cub, self.val_loader_cub, self.test_loader_cub = model.get_data_loaders_ddp(cfgs, 'cub', self.rank, self.world_size, in_image_size=self.in_image_size, batch_size=self.batch_size_cub, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_cub, val_data_dir=self.data_dir_cub, test_data_dir=self.data_dir_cub)
        if self.train_with_kaggle:
            self.batch_size_kaggle = cfgs.get('batch_size_kaggle', 64)
            self.data_dir_kaggle = cfgs.get('data_dir_kaggle', None)
            self.train_loader_kaggle, self.val_loader_kaggle, self.test_loader_kaggle = model.get_data_loaders_ddp(cfgs, 'kaggle', self.rank, self.world_size, in_image_size=self.in_image_size, batch_size=self.batch_size_kaggle, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_kaggle, val_data_dir=self.data_dir_kaggle, test_data_dir=self.data_dir_kaggle)

        if self.use_total_iterations:
            # reset the epoch related cfgs
            
            dataloader_length = max([len(loader) for loader in self.train_loader]) * len(self.train_loader)
            print("Total length of data loader is: ", dataloader_length)
            
            total_epoch = int(self.num_iterations / dataloader_length) + 1

            print(f'run for {total_epoch} epochs')
            
            print('is_main_process()?', misc.is_main_process())

            for k, v in cfgs.items():
                if 'epoch' in k:
                    if isinstance(v, list):
                        new_v = [int(total_epoch * x / 120) + 1 for x in v]
                        cfgs[k] = new_v
                    elif isinstance(v, int):
                        new_v = int(total_epoch * v / 120) + 1
                        cfgs[k] = new_v
                else:
                    continue
            
            self.num_epochs = total_epoch
            self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
            self.cfgs = cfgs

        self.model = model(cfgs)
        self.model.trainer = self
        self.save_result_freq = cfgs.get('save_result_freq', None)
        self.train_result_dir = osp.join(self.checkpoint_dir, 'results')

        self.use_wandb = cfgs.get('use_wandb', False)

    def get_efficient_data_loaders_ddp(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
        train_loader = val_loader = test_loader = None
        color_jitter_train = cfgs.get('color_jitter_train', None)
        color_jitter_val = cfgs.get('color_jitter_val', None)
        random_flip_train = cfgs.get('random_flip_train', False)

        data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
        skip_beginning = cfgs.get('skip_beginning', 4)
        skip_end = cfgs.get('skip_end', 4)
        num_sample_frames = cfgs.get('num_sample_frames', 2)
        min_seq_len = cfgs.get('min_seq_len', 10)
        max_seq_len = cfgs.get('max_seq_len', 10)
        debug_seq = cfgs.get('debug_seq', False)
        random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
        shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
        random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
        load_background = cfgs.get('background_mode', 'none') == 'background'
        rgb_suffix = cfgs.get('rgb_suffix', '.png')
        load_dino_feature = cfgs.get('load_dino_feature', False)
        load_dino_cluster = cfgs.get('load_dino_cluster', False)
        dino_feature_dim = cfgs.get('dino_feature_dim', 64)

        enhance_back_view = cfgs.get('enhance_back_view', False)
        enhance_back_view_path = cfgs.get('enhance_back_view_path', None)

        override_categories = None

        get_loader_ddp = lambda **kwargs: get_sequence_loader_quadrupeds(
            mode=data_loader_mode,
            num_workers=num_workers,
            in_image_size=in_image_size,
            out_image_size=out_image_size,
            debug_seq=debug_seq,
            skip_beginning=skip_beginning,
            skip_end=skip_end,
            num_sample_frames=num_sample_frames,
            min_seq_len=min_seq_len,
            max_seq_len=max_seq_len,
            load_background=load_background,
            rgb_suffix=rgb_suffix,
            load_dino_feature=load_dino_feature,
            load_dino_cluster=load_dino_cluster,
            dino_feature_dim=dino_feature_dim,
            flow_bool=0,
            enhance_back_view=enhance_back_view,
            enhance_back_view_path=enhance_back_view_path,
            override_categories=override_categories,
            **kwargs)
        
        # just the train now
        print(f"Loading training data...")
        val_image_num = cfgs.get('few_shot_val_image_num', 5)
        # the train_data_dir is a dict and will go into the original dataset type

        #TODO: very hack here, directly assign first 7 as original categories
        o_class = ["horse", "elephant", "zebra", "cow", "giraffe", "sheep", "bear"]
        self.original_categories_paths = {}
        self.few_shot_categories_paths = {}
        self.original_val_data_path = {}
        
        for k,v in self.train_data_dir.items():
            if k in o_class:
                self.original_categories_paths.update({k: v})
                self.original_val_data_path.update({k: self.val_data_dir[k]})
            else:
                self.few_shot_categories_paths.update({k:v})
        self.new_classes_num = len(self.few_shot_categories_paths)
        self.original_classes_num = len(self.original_categories_paths)

        train_loader = get_loader_ddp(
            original_data_dirs=self.original_categories_paths, 
            few_shot_data_dirs=self.few_shot_categories_paths, 
            original_num=self.original_classes_num, 
            few_shot_num=self.new_classes_num, 
            rank=self.rank, 
            world_size=self.world_size, 
            batch_size=batch_size, 
            is_validation=False, 
            val_image_num=val_image_num, 
            shuffle=shuffle_train_seqs, 
            dense_sample=True, 
            color_jitter=color_jitter_train, 
            random_flip=random_flip_train
        )
        val_loader = get_loader_ddp(
            original_data_dirs=self.original_val_data_path, 
            few_shot_data_dirs=self.few_shot_categories_paths, 
            original_num=self.original_classes_num, 
            few_shot_num=self.new_classes_num, 
            rank=self.rank, 
            world_size=self.world_size, 
            batch_size=1, 
            is_validation=True, 
            val_image_num=val_image_num, 
            shuffle=False, 
            dense_sample=True, 
            color_jitter=color_jitter_val, 
            random_flip=False
        )

        test_loader = None

        return train_loader, val_loader, test_loader
    
    
    def load_checkpoint(self, optim=True, ckpt_path=None):
        """Search the specified/latest checkpoint in checkpoint_dir and load the model and optimizer."""
        if ckpt_path is not None:
            checkpoint_path = ckpt_path
            self.checkpoint_name = osp.basename(checkpoint_path)
        elif self.checkpoint_name is not None:
            checkpoint_path = osp.join(self.checkpoint_dir, self.checkpoint_name)
        else:
            checkpoints = sorted(glob.glob(osp.join(self.checkpoint_dir, '*.pth')))
            if len(checkpoints) == 0:
                return 0, 0
            checkpoint_path = checkpoints[-1]
            self.checkpoint_name = osp.basename(checkpoint_path)
        
        print(f"Loading checkpoint from {checkpoint_path}")
        cp = torch.load(checkpoint_path, map_location=self.device)
        # print(cp)
        self.model.load_model_state(cp)
        if optim:
            self.model.load_optimizer_state(cp)
        self.metrics_trace = cp['metrics_trace']
        epoch = cp['epoch']
        total_iter = cp['total_iter']
        
        if 'classes_vectors' in cp:
            self.model.classes_vectors = cp['classes_vectors']
        
        return epoch, total_iter

    def save_checkpoint(self, epoch, total_iter=0, optim=True):
        """Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
        misc.xmkdir(self.checkpoint_dir)
        checkpoint_path = osp.join(self.checkpoint_dir, f'checkpoint{epoch:03}.pth')
        state_dict = self.model.get_model_state()
        if optim:
            optimizer_state = self.model.get_optimizer_state()
            state_dict = {**state_dict, **optimizer_state}
        state_dict['metrics_trace'] = self.metrics_trace
        state_dict['epoch'] = epoch
        state_dict['total_iter'] = total_iter
        print(f"Saving checkpoint to {checkpoint_path}")
        torch.save(state_dict, checkpoint_path)
        if self.keep_num_checkpoint > 0:
            misc.clean_checkpoint(self.checkpoint_dir, keep_num=self.keep_num_checkpoint)
    
    def save_last_checkpoint(self, epoch, total_iter=0, optim=True):
        """Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
        misc.xmkdir(self.checkpoint_dir)
        checkpoint_path = osp.join(self.checkpoint_dir, 'last.pth')
        if os.path.exists(checkpoint_path):
            os.remove(checkpoint_path)
        state_dict = self.model.get_model_state()
        if optim:
            optimizer_state = self.model.get_optimizer_state()
            state_dict = {**state_dict, **optimizer_state}
        state_dict['metrics_trace'] = self.metrics_trace
        state_dict['epoch'] = epoch
        state_dict['total_iter'] = total_iter
        print(f"Saving checkpoint to {checkpoint_path}")
        torch.save(state_dict, checkpoint_path)

    def save_clean_checkpoint(self, path):
        """Save model state only to specified path."""
        torch.save(self.model.get_model_state(), path)

    def test(self):
        """Perform testing."""
        self.model.to(self.device)
        epoch, self.total_iter = self.load_checkpoint(optim=False)

        if self.use_ddp:
            self.model.ddp(self.rank, self.world_size)
        self.model.set_eval()

        if self.test_result_dir is None:
            self.test_result_dir = osp.join(self.checkpoint_dir, f'test_results_{self.checkpoint_name}'.replace('.pth', ''))
        print(f"Saving testing results to {self.test_result_dir}")

        with torch.no_grad():
            for iteration, batch in enumerate(self.test_loader):
                m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.test_result_dir, which_data=self.dataset, is_training=False)
                print(f"T{epoch:04}/{iteration:05}")

        score_path = osp.join(self.test_result_dir, 'all_metrics.txt')
        # self.model.save_scores(score_path)

    def train(self):
        """Perform training."""
        # archive code and configs
        if self.archive_code:
            misc.archive_code(osp.join(self.checkpoint_dir, 'archived_code.zip'), filetypes=['.py'])
        misc.dump_yaml(osp.join(self.checkpoint_dir, 'configs.yml'), self.cfgs)

        # initialize
        start_epoch = 0
        self.total_iter = 0
        self.metrics_trace.reset()
        self.model.to(self.device)
        self.model.reset_optimizers()

        # resume from checkpoint
        # from IPython import embed; embed()
        if self.resume:
            start_epoch, self.total_iter = self.load_checkpoint(optim=True)
        
        if self.reset_epoch:
            start_epoch = 0
            self.total_iter = 0

        if start_epoch == 0 and self.total_iter ==0 and self.finetune_ckpt is not None:
            _, _ = self.load_checkpoint(optim=True, ckpt_path=self.finetune_ckpt)

        # distribute model
        if self.use_ddp:
            self.model.ddp(self.rank, self.world_size)

        # train with cub
        if self.train_with_cub:
            self.cub_train_data_iterator = indefinite_generator(self.train_loader_cub)

        # initialize tensorboard logger
        if misc.is_main_process() and self.use_logger:
            if self.use_wandb:
                import wandb
                wandb.tensorboard.patch(root_logdir=osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")))
                wandb.init(name=self.checkpoint_dir.split("/")[-1], project="APT36K")
            from torch.utils.tensorboard import SummaryWriter
            self.logger = SummaryWriter(osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")), flush_secs=10)
            self.viz_data_iterator = indefinite_generator_from_list(self.val_loader) if self.visualize_validation else indefinite_generator_from_list(self.train_loader)
            # self.viz_data_iterator = iter(self.viz_data_iterator)
            if self.fix_viz_batch:
                self.viz_batch = next(self.viz_data_iterator)

            # train with cub
            if self.train_with_cub:
                self.cub_viz_data_iterator = indefinite_generator(self.val_loader_cub) if self.visualize_validation else indefinite_generator(self.train_loader_cub)
                if self.fix_viz_batch:
                    self.viz_batch_cub = next(self.cub_viz_data_iterator)

        # run epochs
        epoch = 0
        for epoch in range(start_epoch, self.num_epochs):
            torch.distributed.barrier()
            metrics = self.run_epoch(epoch)
            if self.rank == 0:
                self.metrics_trace.append("train", metrics)
                if (epoch+1) % self.save_checkpoint_freq == 0:
                    self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True)
                if self.cfgs.get('pyplot_metrics', True):
                    self.metrics_trace.plot(pdf_path=osp.join(self.checkpoint_dir, 'metrics.pdf'))
                self.metrics_trace.save(osp.join(self.checkpoint_dir, 'metrics.json'))
        if self.rank == 0:
            print(f"Training completed for all {epoch+1} epochs.")

    def dry_run(self):
        print(f'rank: {self.rank}, dry_run!!!!!')
        self.dry_run_iters = self.cfgs.get('dr_iters', 2)
        self.resume = self.cfgs.get('dr_resume', True)
        self.use_logger = self.cfgs.get('dr_use_logger', True)
        self.log_freq_losses = self.cfgs.get('dr_log_freq_losses', 1)
        self.save_result_freq = self.cfgs.get('dr_save_result_freq', 1)
        self.log_freq_images = self.cfgs.get('dr_log_freq_images', 1)
        self.log_train_images = self.cfgs.get('dr_log_train_images', True)
        self.visualize_validation = self.cfgs.get('dr_visualize_validation', True)
        self.num_epochs = self.cfgs.get('dr_num_epochs', 1)
        self.train()

    def run_epoch(self, epoch):
        metrics = self.make_metrics()

        self.model.set_train()

        max_loader_len = max([len(loader) for loader in self.train_loader])
        train_generators = [indefinite_generator(loader) for loader in self.train_loader]
        
        iteration = 0
        while iteration < max_loader_len * len(self.train_loader):
            for generator in train_generators:
                batch = next(generator)

                self.total_iter += 1

                if self.total_iter % 4000 == 0:
                    self.save_last_checkpoint(epoch+1, self.total_iter, optim=True)

                num_seqs, num_frames = batch[0].shape[:2]
                total_im_num = num_seqs * num_frames
                m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data=self.dataset, is_training=True)

                if self.train_with_cub and epoch >= self.cub_start_epoch:
                    batch_cub = next(self.cub_train_data_iterator)
                    num_seqs, num_frames = batch_cub[0].shape[:2]
                    total_im_num += num_seqs * num_frames
                    m_cub = self.model.forward(batch_cub, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data='cub', is_training=True)
                    m.update({'cub_'+k: v for k,v in m_cub.items()})
                    m['total_loss'] = self.model.total_loss

                self.model.backward()

                if self.model.enable_disc and (self.model.mask_discriminator_iter[0] < self.total_iter) and (self.model.mask_discriminator_iter[1] > self.total_iter):
                    # the discriminator training
                    discriminator_loss_dict, grad_loss = self.model.discriminator_step()
                    m.update(
                        {
                            'mask_disc_loss_discriminator': discriminator_loss_dict['discriminator_loss'] - grad_loss, 
                            'mask_disc_loss_discriminator_grad': grad_loss,
                            'mask_disc_loss_discriminator_rv': discriminator_loss_dict['discriminator_loss_rv'],
                            'mask_disc_loss_discriminator_iv': discriminator_loss_dict['discriminator_loss_iv'],
                            'mask_disc_loss_discriminator_gt': discriminator_loss_dict['discriminator_loss_gt']
                        }
                    )
                    self.logger.add_histogram('train_'+'discriminator_logits/random_view', discriminator_loss_dict['d_rv'], self.total_iter)
                    if discriminator_loss_dict['d_iv'] is not None:
                        self.logger.add_histogram('train_'+'discriminator_logits/input_view', discriminator_loss_dict['d_iv'], self.total_iter)
                    if discriminator_loss_dict['d_gt'] is not None:
                        self.logger.add_histogram('train_'+'discriminator_logits/gt_view', discriminator_loss_dict['d_gt'], self.total_iter)

                metrics.update(m, total_im_num)
                if self.rank == 0:
                    print(f"T{epoch:04}/{iteration:05}/{metrics}")

                ## reset optimizers
                if self.cfgs.get('opt_reset_every_iter', 0) > 0 and self.total_iter < self.cfgs.get('opt_reset_end_iter', 0):
                    if self.total_iter % self.cfgs.get('opt_reset_every_iter', 0) == 0:
                        self.model.reset_optimizers()

                if misc.is_main_process() and self.use_logger:
                    if self.rank == 0 and self.total_iter % self.log_freq_losses == 0:
                        for name, loss in m.items():
                            label = f'cub_loss_train/{name[4:]}' if 'cub' in name else f'loss_train/{name}'
                            self.logger.add_scalar(label, loss, self.total_iter)
                    if self.rank == 0 and self.save_result_freq is not None and self.total_iter % self.save_result_freq == 0:
                        with torch.no_grad():
                            m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.train_result_dir, which_data=self.dataset, is_training=False)
                            torch.cuda.empty_cache()
                    if self.total_iter % self.log_freq_images == 0:
                        with torch.no_grad():
                            if self.rank == 0 and self.log_train_images:
                                m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='train_', is_training=False)
                            if self.fix_viz_batch:
                                print(f'fix_viz_batch:{self.fix_viz_batch}')
                                batch = self.viz_batch
                            else:
                                batch = next(self.viz_data_iterator)
                            if self.visualize_validation:
                                import time
                                vis_start = time.time()
                                batch = next(self.viz_data_iterator)
                                # try:
                                #     batch = next(self.viz_data_iterator)
                                # except:  # iterator exhausted
                                #     self.reset_viz_data_iterator()
                                #     batch = next(self.viz_data_iterator)
                                m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='val_', is_training=False)
                                vis_end = time.time()
                                print(f"vis time: {vis_end - vis_start}")
                            for name, loss in m.items():
                                if self.rank == 0:
                                    self.logger.add_scalar(f'loss_val/{name}', loss, self.total_iter)

                            if self.train_with_cub and epoch >= self.cub_start_epoch:
                                if self.rank == 0 and self.log_train_images:
                                    m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_train_', is_training=True)

                                if self.fix_viz_batch:
                                    batch_cub = self.viz_batch_cub
                                elif self.visualize_validation:
                                    batch_cub = next(self.cub_viz_data_iterator)
                                    # try:
                                    #     batch = next(self.viz_data_iterator)
                                    # except:  # iterator exhausted
                                    #     self.reset_viz_data_iterator()
                                    #     batch = next(self.viz_data_iterator)
                                if self.rank == 0:
                                    m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_val_', is_training=False)
                                    for name, loss in m.items():
                                        self.logger.add_scalar(f'cub_loss_val/{name}', loss, self.total_iter)
                        torch.cuda.empty_cache()
                if self.is_dry_run and iteration >= self.dry_run_iters:
                    break

                iteration += 1

        self.model.scheduler_step()
        return metrics