Spaces:
Sleeping
Sleeping
File size: 12,964 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from itertools import islice
import torch
def mesh_normal_consistency(meshes, reduce=True):
r"""
Computes the normal consistency of each mesh in meshes.
We compute the normal consistency for each pair of neighboring faces.
If e = (v0, v1) is the connecting edge of two neighboring faces f0 and f1,
then the normal consistency between f0 and f1
.. code-block:: python
a
/\
/ \
/ f0 \
/ \
v0 /____e___\ v1
\ /
\ /
\ f1 /
\ /
\/
b
The normal consistency is
.. code-block:: python
nc(f0, f1) = 1 - cos(n0, n1)
where cos(n0, n1) = n0^n1 / ||n0|| / ||n1|| is the cosine of the angle
between the normals n0 and n1, and
n0 = (v1 - v0) x (a - v0)
n1 = - (v1 - v0) x (b - v0) = (b - v0) x (v1 - v0)
This means that if nc(f0, f1) = 0 then n0 and n1 point to the same
direction, while if nc(f0, f1) = 2 then n0 and n1 point opposite direction.
.. note::
For well-constructed meshes the assumption that only two faces share an
edge is true. This assumption could make the implementation easier and faster.
This implementation does not follow this assumption. All the faces sharing e,
which can be any in number, are discovered.
Args:
meshes: Meshes object with a batch of meshes.
Returns:
loss: Average normal consistency across the batch.
Returns 0 if meshes contains no meshes or all empty meshes.
"""
if meshes.isempty():
return torch.tensor(
[0.0], dtype=torch.float32, device=meshes.device, requires_grad=True
)
N = len(meshes)
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
faces_packed = meshes.faces_packed() # (sum(F_n), 3)
edges_packed = meshes.edges_packed() # (sum(E_n), 2)
verts_packed_to_mesh_idx = meshes.verts_packed_to_mesh_idx() # (sum(V_n),)
face_to_edge = meshes.faces_packed_to_edges_packed() # (sum(F_n), 3)
E = edges_packed.shape[0] # sum(E_n)
F = faces_packed.shape[0] # sum(F_n)
# We don't want gradients for the following operation. The goal is to
# find for each edge e all the vertices associated with e. In the example above,
# the vertices associated with e are (v0, v1, a, b), i.e. points on e (=v0, v1)
# and points connected on faces to e (=a, b).
with torch.no_grad():
edge_idx = face_to_edge.reshape(F * 3) # (3 * F,) indexes into edges
vert_idx = (
faces_packed.view(1, F, 3).expand(3, F, 3).transpose(0, 1).reshape(3 * F, 3)
)
edge_idx, edge_sort_idx = edge_idx.sort()
vert_idx = vert_idx[edge_sort_idx]
# In well constructed meshes each edge is shared by precisely 2 faces
# However, in many meshes, this assumption is not always satisfied.
# We want to find all faces that share an edge, a number which can
# vary and which depends on the topology.
# In particular, we find the vertices not on the edge on the shared faces.
# In the example above, we want to associate edge e with vertices a and b.
# This operation is done more efficiently in cpu with lists.
# TODO(gkioxari) find a better way to do this.
# edge_idx represents the index of the edge for each vertex. We can count
# the number of vertices which are associated with each edge.
# There can be a different number for each edge.
edge_num = edge_idx.bincount(minlength=E)
# Create pairs of vertices associated to e. We generate a list of lists:
# each list has the indices of the vertices which are opposite to one edge.
# The length of the list for each edge will vary.
vert_edge_pair_idx = split_list(
list(range(edge_idx.shape[0])), edge_num.tolist()
)
# For each list find all combinations of pairs in the list. This represents
# all pairs of vertices which are opposite to the same edge.
vert_edge_pair_idx = [
[e[i], e[j]]
for e in vert_edge_pair_idx
for i in range(len(e) - 1)
for j in range(1, len(e))
if i != j
]
vert_edge_pair_idx = torch.tensor(
vert_edge_pair_idx, device=meshes.device, dtype=torch.int64
)
v0_idx = edges_packed[edge_idx, 0]
v0 = verts_packed[v0_idx]
v1_idx = edges_packed[edge_idx, 1]
v1 = verts_packed[v1_idx]
# two of the following cross products are zeros as they are cross product
# with either (v1-v0)x(v1-v0) or (v1-v0)x(v0-v0)
n_temp0 = (v1 - v0).cross(verts_packed[vert_idx[:, 0]] - v0, dim=1)
n_temp1 = (v1 - v0).cross(verts_packed[vert_idx[:, 1]] - v0, dim=1)
n_temp2 = (v1 - v0).cross(verts_packed[vert_idx[:, 2]] - v0, dim=1)
n = n_temp0 + n_temp1 + n_temp2
n0 = n[vert_edge_pair_idx[:, 0]]
n1 = -n[vert_edge_pair_idx[:, 1]]
loss = 1 - torch.cosine_similarity(n0, n1, dim=1)
verts_packed_to_mesh_idx = verts_packed_to_mesh_idx[vert_idx[:, 0]]
verts_packed_to_mesh_idx = verts_packed_to_mesh_idx[vert_edge_pair_idx[:, 0]]
num_normals = verts_packed_to_mesh_idx.bincount(minlength=N)
weights = 1.0 / num_normals[verts_packed_to_mesh_idx].float()
loss = loss * weights
if reduce:
return loss.sum() / N
else:
return loss
def split_list(input, length_to_split):
inputt = iter(input)
return [list(islice(inputt, elem)) for elem in length_to_split]
## new mesh laplacian loss with bug fix (https://github.com/facebookresearch/pytorch3d/blob/ff9c6612b457a2021d88fea119bdb9b94ba017bd/pytorch3d/loss/mesh_laplacian_smoothing.py)
def mesh_laplacian_smoothing(meshes, method: str = "uniform"):
r"""
Computes the laplacian smoothing objective for a batch of meshes.
This function supports three variants of Laplacian smoothing,
namely with uniform weights("uniform"), with cotangent weights ("cot"),
and cotangent cuvature ("cotcurv").For more details read [1, 2].
Args:
meshes: Meshes object with a batch of meshes.
method: str specifying the method for the laplacian.
Returns:
loss: Average laplacian smoothing loss across the batch.
Returns 0 if meshes contains no meshes or all empty meshes.
Consider a mesh M = (V, F), with verts of shape Nx3 and faces of shape Mx3.
The Laplacian matrix L is a NxN tensor such that LV gives a tensor of vectors:
for a uniform Laplacian, LuV[i] points to the centroid of its neighboring
vertices, a cotangent Laplacian LcV[i] is known to be an approximation of
the surface normal, while the curvature variant LckV[i] scales the normals
by the discrete mean curvature. For vertex i, assume S[i] is the set of
neighboring vertices to i, a_ij and b_ij are the "outside" angles in the
two triangles connecting vertex v_i and its neighboring vertex v_j
for j in S[i], as seen in the diagram below.
.. code-block:: python
a_ij
/\
/ \
/ \
/ \
v_i /________\ v_j
\ /
\ /
\ /
\ /
\/
b_ij
The definition of the Laplacian is LV[i] = sum_j w_ij (v_j - v_i)
For the uniform variant, w_ij = 1 / |S[i]|
For the cotangent variant,
w_ij = (cot a_ij + cot b_ij) / (sum_k cot a_ik + cot b_ik)
For the cotangent curvature, w_ij = (cot a_ij + cot b_ij) / (4 A[i])
where A[i] is the sum of the areas of all triangles containing vertex v_i.
There is a nice trigonometry identity to compute cotangents. Consider a triangle
with side lengths A, B, C and angles a, b, c.
.. code-block:: python
c
/|\
/ | \
/ | \
B / H| \ A
/ | \
/ | \
/a_____|_____b\
C
Then cot a = (B^2 + C^2 - A^2) / 4 * area
We know that area = CH/2, and by the law of cosines we have
A^2 = B^2 + C^2 - 2BC cos a => B^2 + C^2 - A^2 = 2BC cos a
Putting these together, we get:
B^2 + C^2 - A^2 2BC cos a
_______________ = _________ = (B/H) cos a = cos a / sin a = cot a
4 * area 2CH
[1] Desbrun et al, "Implicit fairing of irregular meshes using diffusion
and curvature flow", SIGGRAPH 1999.
[2] Nealan et al, "Laplacian Mesh Optimization", Graphite 2006.
"""
if meshes.isempty():
return torch.tensor(
[0.0], dtype=torch.float32, device=meshes.device, requires_grad=True
)
N = len(meshes)
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
num_verts_per_mesh = meshes.num_verts_per_mesh() # (N,)
verts_packed_idx = meshes.verts_packed_to_mesh_idx() # (sum(V_n),)
weights = num_verts_per_mesh.gather(0, verts_packed_idx) # (sum(V_n),)
weights = 1.0 / weights.float()
# We don't want to backprop through the computation of the Laplacian;
# just treat it as a magic constant matrix that is used to transform
# verts into normals
with torch.no_grad():
if method == "uniform":
L = meshes.laplacian_packed()
elif method in ["cot", "cotcurv"]:
L, inv_areas = laplacian_cot(meshes)
if method == "cot":
norm_w = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1)
idx = norm_w > 0
norm_w[idx] = 1.0 / norm_w[idx]
else:
L_sum = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1)
norm_w = 0.25 * inv_areas
else:
raise ValueError("Method should be one of {uniform, cot, cotcurv}")
if method == "uniform":
loss = L.mm(verts_packed)
elif method == "cot":
loss = L.mm(verts_packed) * norm_w - verts_packed
elif method == "cotcurv":
loss = (L.mm(verts_packed) - L_sum * verts_packed) * norm_w
loss = loss.norm(dim=1)
loss = loss * weights
return loss.sum() / N
def laplacian_cot(meshes):
"""
Returns the Laplacian matrix with cotangent weights and the inverse of the
face areas.
Args:
meshes: Meshes object with a batch of meshes.
Returns:
2-element tuple containing
- **L**: FloatTensor of shape (V,V) for the Laplacian matrix (V = sum(V_n))
Here, L[i, j] = cot a_ij + cot b_ij iff (i, j) is an edge in meshes.
See the description above for more clarity.
- **inv_areas**: FloatTensor of shape (V,) containing the inverse of sum of
face areas containing each vertex
"""
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
faces_packed = meshes.faces_packed() # (sum(F_n), 3)
# V = sum(V_n), F = sum(F_n)
V, F = verts_packed.shape[0], faces_packed.shape[0]
face_verts = verts_packed[faces_packed]
v0, v1, v2 = face_verts[:, 0], face_verts[:, 1], face_verts[:, 2]
# Side lengths of each triangle, of shape (sum(F_n),)
# A is the side opposite v1, B is opposite v2, and C is opposite v3
A = (v1 - v2).norm(dim=1)
B = (v0 - v2).norm(dim=1)
C = (v0 - v1).norm(dim=1)
# Area of each triangle (with Heron's formula); shape is (sum(F_n),)
s = 0.5 * (A + B + C)
# note that the area can be negative (close to 0) causing nans after sqrt()
# we clip it to a small positive value
area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt()
# Compute cotangents of angles, of shape (sum(F_n), 3)
A2, B2, C2 = A * A, B * B, C * C
cota = (B2 + C2 - A2) / area
cotb = (A2 + C2 - B2) / area
cotc = (A2 + B2 - C2) / area
cot = torch.stack([cota, cotb, cotc], dim=1)
cot /= 4.0
# Construct a sparse matrix by basically doing:
# L[v1, v2] = cota
# L[v2, v0] = cotb
# L[v0, v1] = cotc
ii = faces_packed[:, [1, 2, 0]]
jj = faces_packed[:, [2, 0, 1]]
idx = torch.stack([ii, jj], dim=0).view(2, F * 3)
L = torch.sparse.FloatTensor(idx, cot.view(-1), (V, V))
# Make it symmetric; this means we are also setting
# L[v2, v1] = cota
# L[v0, v2] = cotb
# L[v1, v0] = cotc
L += L.t()
# For each vertex, compute the sum of areas for triangles containing it.
idx = faces_packed.view(-1)
inv_areas = torch.zeros(V, dtype=torch.float32, device=meshes.device)
val = torch.stack([area] * 3, dim=1).view(-1)
inv_areas.scatter_add_(0, idx, val)
idx = inv_areas > 0
inv_areas[idx] = 1.0 / inv_areas[idx]
inv_areas = inv_areas.view(-1, 1)
return L, inv_areas
|