Spaces:
Sleeping
Sleeping
import os.path as osp | |
import cv2 | |
import numpy as np | |
import scipy.io as sio | |
import torch | |
from PIL import Image | |
from torch.utils.data import Dataset | |
from types import SimpleNamespace | |
def get_cub_loader(data_dir, split='test', is_validation=False, batch_size=256, num_workers=4, image_size=256): | |
opts = SimpleNamespace() | |
opts.data_dir = data_dir | |
opts.padding_frac = 0.05 | |
opts.jitter_frac = 0.05 | |
opts.input_size = image_size | |
opts.split = split | |
dataset = CUBDataset(opts) | |
loader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
shuffle=not is_validation, | |
num_workers=num_workers, | |
pin_memory=True | |
) | |
return loader | |
class CUBDataset(Dataset): | |
def __init__(self, opts): | |
super().__init__() | |
self.opts = opts | |
self.img_size = opts.input_size | |
self.jitter_frac = opts.jitter_frac | |
self.padding_frac = opts.padding_frac | |
self.split = opts.split | |
self.data_dir = opts.data_dir | |
self.data_cache_dir = osp.join(self.data_dir, 'cachedir/cub') | |
self.img_dir = osp.join(self.data_dir, 'images') | |
self.anno_path = osp.join(self.data_cache_dir, 'data', '%s_cub_cleaned.mat' % self.split) | |
self.anno_sfm_path = osp.join(self.data_cache_dir, 'sfm', 'anno_%s.mat' % self.split) | |
if not osp.exists(self.anno_path): | |
print('%s doesnt exist!' % self.anno_path) | |
import pdb; pdb.set_trace() | |
# Load the annotation file. | |
print('loading %s' % self.anno_path) | |
self.anno = sio.loadmat( | |
self.anno_path, struct_as_record=False, squeeze_me=True)['images'] | |
self.anno_sfm = sio.loadmat( | |
self.anno_sfm_path, struct_as_record=False, squeeze_me=True)['sfm_anno'] | |
self.kp_perm = np.array([1, 2, 3, 4, 5, 6, 11, 12, 13, 10, 7, 8, 9, 14, 15]) - 1; | |
self.num_imgs = len(self.anno) | |
print('%d images' % self.num_imgs) | |
def forward_img(self, index): | |
data = self.anno[index] | |
data_sfm = self.anno_sfm[0] | |
# sfm_pose = (sfm_c, sfm_t, sfm_r) | |
sfm_pose = [np.copy(data_sfm.scale), np.copy(data_sfm.trans), np.copy(data_sfm.rot)] | |
sfm_rot = np.pad(sfm_pose[2], (0,1), 'constant') | |
sfm_rot[3, 3] = 1 | |
sfm_pose[2] = quaternion_from_matrix(sfm_rot, isprecise=True) | |
img_path = osp.join(self.img_dir, str(data.rel_path)) | |
#img_path = img_path.replace("JPEG", "jpg") | |
img = np.array(Image.open(img_path)) | |
# Some are grayscale: | |
if len(img.shape) == 2: | |
img = np.repeat(np.expand_dims(img, 2), 3, axis=2) | |
mask = data.mask | |
mask = np.expand_dims(mask, 2) | |
h,w,_ = mask.shape | |
# Adjust to 0 indexing | |
bbox = np.array( | |
[data.bbox.x1, data.bbox.y1, data.bbox.x2, data.bbox.y2], | |
float) - 1 | |
parts = data.parts.T.astype(float) | |
kp = np.copy(parts) | |
vis = kp[:, 2] > 0 | |
kp[vis, :2] -= 1 | |
# Peturb bbox | |
if self.split == 'train': | |
bbox = peturb_bbox( | |
bbox, pf=self.padding_frac, jf=self.jitter_frac) | |
else: | |
bbox = peturb_bbox( | |
bbox, pf=self.padding_frac, jf=0) | |
bbox = square_bbox(bbox) | |
# crop image around bbox, translate kps | |
img, mask, kp, sfm_pose = self.crop_image(img, mask, bbox, kp, vis, sfm_pose) | |
# scale image, and mask. And scale kps. | |
img, mask, kp, sfm_pose = self.scale_image(img, mask, kp, vis, sfm_pose) | |
# Mirror image on random. | |
if self.split == 'train': | |
img, mask, kp, sfm_pose = self.mirror_image(img, mask, kp, sfm_pose) | |
# Normalize kp to be [-1, 1] | |
img_h, img_w = img.shape[:2] | |
kp_norm, sfm_pose = self.normalize_kp(kp, sfm_pose, img_h, img_w) | |
# img = Image.fromarray(np.asarray(img, np.uint8)) | |
mask = np.asarray(mask, np.float32) | |
return img, kp_norm, mask, sfm_pose, img_path | |
def normalize_kp(self, kp, sfm_pose, img_h, img_w): | |
vis = kp[:, 2, None] > 0 | |
new_kp = np.stack([2 * (kp[:, 0] / img_w) - 1, | |
2 * (kp[:, 1] / img_h) - 1, | |
kp[:, 2]]).T | |
sfm_pose[0] *= (1.0/img_w + 1.0/img_h) | |
sfm_pose[1][0] = 2.0 * (sfm_pose[1][0] / img_w) - 1 | |
sfm_pose[1][1] = 2.0 * (sfm_pose[1][1] / img_h) - 1 | |
new_kp = vis * new_kp | |
return new_kp, sfm_pose | |
def crop_image(self, img, mask, bbox, kp, vis, sfm_pose): | |
# crop image and mask and translate kps | |
img = crop(img, bbox, bgval=1) | |
mask = crop(mask, bbox, bgval=0) | |
kp[vis, 0] -= bbox[0] | |
kp[vis, 1] -= bbox[1] | |
sfm_pose[1][0] -= bbox[0] | |
sfm_pose[1][1] -= bbox[1] | |
return img, mask, kp, sfm_pose | |
def scale_image(self, img, mask, kp, vis, sfm_pose): | |
# Scale image so largest bbox size is img_size | |
bwidth = np.shape(img)[0] | |
bheight = np.shape(img)[1] | |
scale = self.img_size / float(max(bwidth, bheight)) | |
img_scale, _ = resize_img(img, scale) | |
# if img_scale.shape[0] != self.img_size: | |
# print('bad!') | |
# import ipdb; ipdb.set_trace() | |
# mask_scale, _ = resize_img(mask, scale) | |
# mask_scale, _ = resize_img(mask, scale, interpolation=cv2.INTER_NEAREST) | |
mask_scale, _ = resize_img(mask, scale) | |
kp[vis, :2] *= scale | |
sfm_pose[0] *= scale | |
sfm_pose[1] *= scale | |
return img_scale, mask_scale, kp, sfm_pose | |
def mirror_image(self, img, mask, kp, sfm_pose): | |
kp_perm = self.kp_perm | |
if np.random.rand(1) > 0.5: | |
# Need copy bc torch collate doesnt like neg strides | |
img_flip = img[:, ::-1, :].copy() | |
mask_flip = mask[:, ::-1].copy() | |
# Flip kps. | |
new_x = img.shape[1] - kp[:, 0] - 1 | |
kp_flip = np.hstack((new_x[:, None], kp[:, 1:])) | |
kp_flip = kp_flip[kp_perm, :] | |
# Flip sfm_pose Rot. | |
R = quaternion_matrix(sfm_pose[2]) | |
flip_R = np.diag([-1, 1, 1, 1]).dot(R.dot(np.diag([-1, 1, 1, 1]))) | |
sfm_pose[2] = quaternion_from_matrix(flip_R, isprecise=True) | |
# Flip tx | |
tx = img.shape[1] - sfm_pose[1][0] - 1 | |
sfm_pose[1][0] = tx | |
return img_flip, mask_flip, kp_flip, sfm_pose | |
else: | |
return img, mask, kp, sfm_pose | |
def __len__(self): | |
return self.num_imgs | |
def __getitem__(self, index): | |
img, kp, mask, sfm_pose, img_path = self.forward_img(index) | |
sfm_pose[0].shape = 1 | |
mask = np.expand_dims(mask, 2) | |
images = torch.FloatTensor(img /255.).permute(2,0,1).unsqueeze(0) | |
masks = torch.FloatTensor(mask).permute(2,0,1).repeat(1,3,1,1) | |
mask_dt = compute_distance_transform(masks) | |
# flows = torch.zeros(1,2, self.img_size, self.img_size) | |
flows = torch.zeros(1) | |
bboxs = torch.FloatTensor([0, 0, 0, self.img_size, self.img_size, 1, 1, 0]).unsqueeze(0) # frame_id, crop_x0, crop_y0, crop_w, crop_h, resize_sx, resize_sy, sharpness | |
bg_image = images[0] | |
seq_idx = torch.LongTensor([index]) | |
frame_idx = torch.LongTensor([0]) | |
return images, masks, mask_dt, flows, bboxs, bg_image, seq_idx, frame_idx | |
def compute_distance_transform(mask): | |
mask_dt = [] | |
for m in mask: | |
dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE)) | |
inv_dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(1 - m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE)) | |
mask_dt += [torch.stack([dt, inv_dt], 0)] | |
return torch.stack(mask_dt, 0) # Bx2xHxW | |
def resize_img(img, scale_factor): | |
new_size = (np.round(np.array(img.shape[:2]) * scale_factor)).astype(int) | |
new_img = cv2.resize(img, (new_size[1], new_size[0])) | |
# This is scale factor of [height, width] i.e. [y, x] | |
actual_factor = [new_size[0] / float(img.shape[0]), | |
new_size[1] / float(img.shape[1])] | |
return new_img, actual_factor | |
def peturb_bbox(bbox, pf=0, jf=0): | |
''' | |
Jitters and pads the input bbox. | |
Args: | |
bbox: Zero-indexed tight bbox. | |
pf: padding fraction. | |
jf: jittering fraction. | |
Returns: | |
pet_bbox: Jittered and padded box. Might have -ve or out-of-image coordinates | |
''' | |
pet_bbox = [coord for coord in bbox] | |
bwidth = bbox[2] - bbox[0] + 1 | |
bheight = bbox[3] - bbox[1] + 1 | |
pet_bbox[0] -= (pf*bwidth) + (1-2*np.random.random())*jf*bwidth | |
pet_bbox[1] -= (pf*bheight) + (1-2*np.random.random())*jf*bheight | |
pet_bbox[2] += (pf*bwidth) + (1-2*np.random.random())*jf*bwidth | |
pet_bbox[3] += (pf*bheight) + (1-2*np.random.random())*jf*bheight | |
return pet_bbox | |
def square_bbox(bbox): | |
''' | |
Converts a bbox to have a square shape by increasing size along non-max dimension. | |
''' | |
sq_bbox = [int(round(coord)) for coord in bbox] | |
bwidth = sq_bbox[2] - sq_bbox[0] + 1 | |
bheight = sq_bbox[3] - sq_bbox[1] + 1 | |
maxdim = float(max(bwidth, bheight)) | |
dw_b_2 = int(round((maxdim-bwidth)/2.0)) | |
dh_b_2 = int(round((maxdim-bheight)/2.0)) | |
sq_bbox[0] -= dw_b_2 | |
sq_bbox[1] -= dh_b_2 | |
sq_bbox[2] = sq_bbox[0] + maxdim - 1 | |
sq_bbox[3] = sq_bbox[1] + maxdim - 1 | |
return sq_bbox | |
def crop(img, bbox, bgval=0): | |
''' | |
Crops a region from the image corresponding to the bbox. | |
If some regions specified go outside the image boundaries, the pixel values are set to bgval. | |
Args: | |
img: image to crop | |
bbox: bounding box to crop | |
bgval: default background for regions outside image | |
''' | |
bbox = [int(round(c)) for c in bbox] | |
bwidth = bbox[2] - bbox[0] + 1 | |
bheight = bbox[3] - bbox[1] + 1 | |
im_shape = np.shape(img) | |
im_h, im_w = im_shape[0], im_shape[1] | |
nc = 1 if len(im_shape) < 3 else im_shape[2] | |
img_out = np.ones((bheight, bwidth, nc))*bgval | |
x_min_src = max(0, bbox[0]) | |
x_max_src = min(im_w, bbox[2]+1) | |
y_min_src = max(0, bbox[1]) | |
y_max_src = min(im_h, bbox[3]+1) | |
x_min_trg = x_min_src - bbox[0] | |
x_max_trg = x_max_src - x_min_src + x_min_trg | |
y_min_trg = y_min_src - bbox[1] | |
y_max_trg = y_max_src - y_min_src + y_min_trg | |
img_out[y_min_trg:y_max_trg, x_min_trg:x_max_trg, :] = img[y_min_src:y_max_src, x_min_src:x_max_src, :] | |
return img_out | |
# https://github.com/akanazawa/cmr/blob/master/utils/transformations.py | |
import math | |
import numpy | |
_EPS = numpy.finfo(float).eps * 4.0 | |
def quaternion_matrix(quaternion): | |
"""Return homogeneous rotation matrix from quaternion. | |
>>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0]) | |
>>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0])) | |
True | |
>>> M = quaternion_matrix([1, 0, 0, 0]) | |
>>> numpy.allclose(M, numpy.identity(4)) | |
True | |
>>> M = quaternion_matrix([0, 1, 0, 0]) | |
>>> numpy.allclose(M, numpy.diag([1, -1, -1, 1])) | |
True | |
""" | |
q = numpy.array(quaternion, dtype=numpy.float64, copy=True) | |
n = numpy.dot(q, q) | |
if n < _EPS: | |
return numpy.identity(4) | |
q *= math.sqrt(2.0 / n) | |
q = numpy.outer(q, q) | |
return numpy.array([ | |
[1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0], | |
[ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0], | |
[ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0], | |
[ 0.0, 0.0, 0.0, 1.0]]) | |
def quaternion_from_matrix(matrix, isprecise=False): | |
"""Return quaternion from rotation matrix. | |
If isprecise is True, the input matrix is assumed to be a precise rotation | |
matrix and a faster algorithm is used. | |
>>> q = quaternion_from_matrix(numpy.identity(4), True) | |
>>> numpy.allclose(q, [1, 0, 0, 0]) | |
True | |
>>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1])) | |
>>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0]) | |
True | |
>>> R = rotation_matrix(0.123, (1, 2, 3)) | |
>>> q = quaternion_from_matrix(R, True) | |
>>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786]) | |
True | |
>>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0], | |
... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]] | |
>>> q = quaternion_from_matrix(R) | |
>>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611]) | |
True | |
>>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0], | |
... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]] | |
>>> q = quaternion_from_matrix(R) | |
>>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603]) | |
True | |
>>> R = random_rotation_matrix() | |
>>> q = quaternion_from_matrix(R) | |
>>> is_same_transform(R, quaternion_matrix(q)) | |
True | |
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False), | |
... quaternion_from_matrix(R, isprecise=True)) | |
True | |
>>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0) | |
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False), | |
... quaternion_from_matrix(R, isprecise=True)) | |
True | |
""" | |
M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] | |
if isprecise: | |
q = numpy.empty((4, )) | |
t = numpy.trace(M) | |
if t > M[3, 3]: | |
q[0] = t | |
q[3] = M[1, 0] - M[0, 1] | |
q[2] = M[0, 2] - M[2, 0] | |
q[1] = M[2, 1] - M[1, 2] | |
else: | |
i, j, k = 0, 1, 2 | |
if M[1, 1] > M[0, 0]: | |
i, j, k = 1, 2, 0 | |
if M[2, 2] > M[i, i]: | |
i, j, k = 2, 0, 1 | |
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] | |
q[i] = t | |
q[j] = M[i, j] + M[j, i] | |
q[k] = M[k, i] + M[i, k] | |
q[3] = M[k, j] - M[j, k] | |
q = q[[3, 0, 1, 2]] | |
q *= 0.5 / math.sqrt(t * M[3, 3]) | |
else: | |
m00 = M[0, 0] | |
m01 = M[0, 1] | |
m02 = M[0, 2] | |
m10 = M[1, 0] | |
m11 = M[1, 1] | |
m12 = M[1, 2] | |
m20 = M[2, 0] | |
m21 = M[2, 1] | |
m22 = M[2, 2] | |
# symmetric matrix K | |
K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0], | |
[m01+m10, m11-m00-m22, 0.0, 0.0], | |
[m02+m20, m12+m21, m22-m00-m11, 0.0], | |
[m21-m12, m02-m20, m10-m01, m00+m11+m22]]) | |
K /= 3.0 | |
# quaternion is eigenvector of K that corresponds to largest eigenvalue | |
w, V = numpy.linalg.eigh(K) | |
q = V[[3, 0, 1, 2], numpy.argmax(w)] | |
if q[0] < 0.0: | |
numpy.negative(q, q) | |
return q | |