3DFauna_demo / video3d /dataloaders_ddp.py
kyleleey
first commit
98a77e0
raw
history blame
60.5 kB
import os
from glob import glob
import random
import numpy as np
from PIL import Image
import cv2
import itertools
import torch
import copy
from torch.utils.data import Dataset
import torchvision.datasets.folder
import torchvision.transforms as transforms
from einops import rearrange
def compute_distance_transform(mask):
mask_dt = []
for m in mask:
dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
inv_dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(1 - m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
mask_dt += [torch.stack([dt, inv_dt], 0)]
return torch.stack(mask_dt, 0) # Bx2xHxW
def crop_image(image, boxs, size):
crops = []
for box in boxs:
crop_x0, crop_y0, crop_w, crop_h = box
crop = transforms.functional.resized_crop(image, crop_y0, crop_x0, crop_h, crop_w, size)
crop = transforms.functional.to_tensor(crop)
crops += [crop]
return torch.stack(crops, 0)
def box_loader(fpath):
box = np.loadtxt(fpath, 'str')
box[0] = box[0].split('_')[0]
return box.astype(np.float32)
def read_feat_from_img(path, n_channels):
feat = np.array(Image.open(path))
return dencode_feat_from_img(feat, n_channels)
def dencode_feat_from_img(img, n_channels):
n_addon_channels = int(np.ceil(n_channels / 3) * 3) - n_channels
n_tiles = int((n_channels + n_addon_channels) / 3)
feat = rearrange(img, 'h (t w) c -> h w (t c)', t=n_tiles, c=3)
if n_addon_channels != 0:
feat = feat[:, :, :-n_addon_channels]
feat = feat.astype('float32') / 255
return feat.transpose(2, 0, 1)
def dino_loader(fpath, n_channels):
dino_map = read_feat_from_img(fpath, n_channels)
return dino_map
def get_valid_mask(boxs, image_size):
valid_masks = []
for box in boxs:
crop_x0, crop_y0, crop_w, crop_h, full_w, full_h = box[1:7].int().numpy()
margin_w = int(crop_w * 0.02)
margin_h = int(crop_h * 0.02)
mask_full = torch.ones(full_h-margin_h*2, full_w-margin_w*2)
mask_full_pad = torch.nn.functional.pad(mask_full, (crop_w+margin_w, crop_w+margin_w, crop_h+margin_h, crop_h+margin_h), mode='constant', value=0.0)
mask_full_crop = mask_full_pad[(crop_y0+crop_h):crop_y0+(crop_h*2), (crop_x0+crop_w):crop_x0+(crop_w*2)]
mask_crop = torch.nn.functional.interpolate(mask_full_crop[None, None, :, :], image_size, mode='nearest')[0,0]
valid_masks += [mask_crop]
return torch.stack(valid_masks, 0) # NxHxW
def horizontal_flip_box(box):
frame_id, crop_x0, crop_y0, crop_w, crop_h, full_w, full_h, sharpness, label = box.unbind(1)
box[:,1] = full_w - crop_x0 - crop_w # x0
return box
def horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features=None, dino_clusters=None):
images = images.flip(3) # NxCxHxW
masks = masks.flip(3) # NxCxHxW
mask_dt = mask_dt.flip(3) # NxCxHxW
mask_valid = mask_valid.flip(2) # NxHxW
if flows.dim() > 1:
flows = flows.flip(3) # (N-1)x(x,y)xHxW
flows[:,0] *= -1 # invert delta x
bboxs = horizontal_flip_box(bboxs) # NxK
bg_images = bg_images.flip(3) # NxCxHxW
if dino_features.dim() > 1:
dino_features = dino_features.flip(3)
if dino_clusters.dim() > 1:
dino_clusters = dino_clusters.flip(3)
return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters
def none_to_nan(x):
return torch.FloatTensor([float('nan')]) if x is None else x
class BaseSequenceDataset(Dataset):
def __init__(self, root, skip_beginning=4, skip_end=4, min_seq_len=10, debug_seq=False):
super().__init__()
self.skip_beginning = skip_beginning
self.skip_end = skip_end
self.min_seq_len = min_seq_len
# self.pattern = "{:07d}_{}"
self.sequences = self._make_sequences(root)
if debug_seq:
# self.sequences = [self.sequences[0][20:160]] * 100
seq_len = 0
while seq_len < min_seq_len:
i = np.random.randint(len(self.sequences))
rand_seq = self.sequences[i]
seq_len = len(rand_seq)
self.sequences = [rand_seq]
self.samples = []
def _make_sequences(self, path):
result = []
for d in sorted(os.scandir(path), key=lambda e: e.name):
if d.is_dir():
files = self._parse_folder(d)
if len(files) >= self.min_seq_len:
result.append(files)
return result
def _parse_folder(self, path):
result = sorted(glob(os.path.join(path, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
if len(result) <= self.skip_beginning + self.skip_end:
return []
if self.skip_end == 0:
return result[self.skip_beginning:]
return result[self.skip_beginning:-self.skip_end]
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
raise NotImplemented("This is a base class and should not be used directly")
class NFrameSequenceDataset(BaseSequenceDataset):
def __init__(self, root, cat_name=None, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, in_image_size=256, out_image_size=256, debug_seq=False, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64, flow_bool=False, **kwargs):
self.cat_name = cat_name
self.flow_bool=flow_bool
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.bbox_loaders = [("box.txt", box_loader)]
super().__init__(root, skip_beginning, skip_end, min_seq_len, debug_seq)
# from IPython import embed; embed()
if flow_bool and num_sample_frames > 1:
self.flow_loaders = [("flow.png", cv2.imread, cv2.IMREAD_UNCHANGED)]
else:
self.flow_loaders = None
self.num_sample_frames = num_sample_frames
self.random_sample = random_sample
if self.random_sample:
if shuffle:
random.shuffle(self.sequences)
self.samples = self.sequences
else:
for i, s in enumerate(self.sequences):
stride = 1 if dense_sample else self.num_sample_frames
self.samples += [(i, k) for k in range(0, len(s), stride)]
if shuffle:
random.shuffle(self.samples)
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
if self.flow_loaders is not None:
self.flow_transform = lambda x: (torch.FloatTensor(x.astype(np.float32)).flip(2)[:,:,:2] / 65535. ) *2 -1
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
self.load_dino_cluster = load_dino_cluster
if load_dino_cluster:
self.dino_cluster_loaders = [("clusters.png", torchvision.datasets.folder.default_loader)]
def __getitem__(self, index):
if self.random_sample:
seq_idx = index % len(self.sequences)
seq = self.sequences[seq_idx]
if len(seq) < self.num_sample_frames:
start_frame_idx = 0
else:
start_frame_idx = np.random.randint(len(seq)-self.num_sample_frames+1)
paths = seq[start_frame_idx:start_frame_idx+self.num_sample_frames]
else:
seq_idx, start_frame_idx = self.samples[index % len(self.samples)]
seq = self.sequences[seq_idx]
# Handle edge case: when only last frame is left, sample last two frames, except if the sequence only has one frame
if len(seq) <= start_frame_idx +1:
start_frame_idx = max(0, start_frame_idx-1)
paths = seq[start_frame_idx:start_frame_idx+self.num_sample_frames]
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
if self.flow_bool==True and len(paths) > 1:
flows = torch.stack(self._load_ids(paths[:-1], self.flow_loaders, transform=self.flow_transform), 0).permute(0,3,1,2) # load flow for first image, (N-1)x(x,y)xHxW, -1~1
flows = torch.nn.functional.interpolate(flows, size=self.out_image_size, mode="bilinear")
else:
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, self.bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
dino_paths = [
x.replace(
"/viscam/projects/articulated/dor/AnimalsMotionDataset/splitted_data/Combine_data/dinov2_new",
"/viscam/projects/articulated/zzli/data_dino_5000/7_cat"
)
for x in paths
]
dino_features = torch.stack(self._load_ids(dino_paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0)
# dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
if self.load_dino_cluster:
dino_clusters = torch.stack(self._load_ids(paths, self.dino_cluster_loaders, transform=transforms.ToTensor()), 0) # BxFx3x55x55
else:
dino_clusters = torch.zeros(1)
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(start_frame_idx, start_frame_idx+len(paths)).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name
def few_shot_box_loader(fpath):
box = np.loadtxt(fpath, 'str')
# box[0] = box[0].split('_')[0]
return box.astype(np.float32)
class FewShotImageDataset(Dataset):
def __init__(self, root, cat_name=None, cat_num=0, num_sample_frames=2, in_image_size=256, out_image_size=256, shuffle=False, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, dino_feature_dim=64, flow_bool=False, **kwargs):
super().__init__()
self.cat_name = cat_name
self.cat_num = cat_num # this is actually useless
self.flow_bool=flow_bool
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.bbox_loaders = [("box.txt", few_shot_box_loader)]
self.flow_loaders = None
# get all the valid paths, since it's just image-wise, in get_item, we will make it like a len=1 sequence
result = sorted(glob(os.path.join(root, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
self.sequences = result
self.num_sample_frames = num_sample_frames
if shuffle:
random.shuffle(self.sequences)
self.samples = self.sequences
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
paths = [self.samples[index]] # len 1 sequence
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, self.bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
bboxs=torch.cat([bboxs, torch.Tensor([[self.cat_num]]).float()],dim=-1) # pad a label number
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
dino_clusters = torch.zeros(1)
# These are actually no use
seq_idx = 0
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(0, 1).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, self.cat_name
class Quadrupeds_Image_Dataset(Dataset):
def __init__(self, original_data_dirs, few_shot_data_dirs, original_num=7, few_shot_num=93, num_sample_frames=2,
in_image_size=256, out_image_size=256, is_validation=False, val_image_num=5, shuffle=False, color_jitter=None,
load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, dino_feature_dim=64,
flow_bool=False, disable_fewshot=False, dataset_split_num=-1, **kwargs):
self.original_data_dirs = original_data_dirs
self.few_shot_data_dirs = few_shot_data_dirs
self.original_num = original_num
self.few_shot_num = few_shot_num
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.original_bbox_loaders = [("box.txt", box_loader)]
self.few_shot_bbox_loaders = [("box.txt", few_shot_box_loader)]
assert len(self.original_data_dirs.keys()) == self.original_num
assert len(self.few_shot_data_dirs.keys()) == self.few_shot_num
self.num_sample_frames = num_sample_frames
self.batch_size = kwargs['batch_size'] # a hack way here
# for debug, just use some categories
if "override_categories" in kwargs:
self.override_categories = kwargs["override_categories"]
else:
self.override_categories = None
# original dataset
original_data_paths = {}
for k,v in self.original_data_dirs.items():
# categories override
if self.override_categories is not None:
if k not in self.override_categories:
continue
sequences = self._make_sequences(v)
samples = []
for seq in sequences:
samples += seq
if shuffle:
random.shuffle(samples)
original_data_paths.update({k: samples})
# few-shot dataset
enhance_back_view = kwargs['enhance_back_view']
if enhance_back_view:
enhance_back_view_path = kwargs['enhance_back_view_path']
few_shot_data_paths = {}
for k,v in self.few_shot_data_dirs.items():
# categories override
if self.override_categories is not None:
if k not in self.override_categories:
continue
if k.startswith('_'):
# a boundary here for dealing with when in new data, we have same categories as in 7-cat
v = v.replace(k, k[1:])
if isinstance(v, str):
result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
elif isinstance(v, list):
result = []
for _v in v:
result = result + sorted(glob(os.path.join(_v, '*'+self.image_loaders[0][0])))
else:
raise NotImplementedError
# result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
sequences = result
# the original 7 categories are using pre-defined paths to separate train and test
# here the few-shot we use is_validation to decide if this dataset is train or test
# if use enhanced back view, we first pad the multiplied back view image paths at the front of seq
# i.e., we don't use back view images for validation
if enhance_back_view:
back_view_dir = os.path.join(enhance_back_view_path, k, 'train')
back_view_result = sorted(glob(os.path.join(back_view_dir, '*'+self.image_loaders[0][0])))
back_view_result = [p.replace(self.image_loaders[0][0], '{}') for p in back_view_result]
mul_bv_sequences = self._more_back_views(back_view_result, result)
sequences = mul_bv_sequences + sequences
if is_validation:
# sequences = sequences[-2:]
sequences = sequences[-val_image_num:]
else:
# sequences = sequences[:-2]
sequences = sequences[:-val_image_num]
if shuffle:
random.shuffle(sequences)
few_shot_data_paths.update({k: sequences})
# for visualization purpose
self.pure_ori_data_path = original_data_paths
self.pure_fs_data_path = few_shot_data_paths
self.few_shot_data_length = self._get_data_length(few_shot_data_paths) # get the original length of each few-shot category
if disable_fewshot:
few_shot_data_paths = {}
self.dataset_split_num = dataset_split_num # if -1 then pad to longest, otherwise follow this number to pad and split
if is_validation:
self.dataset_split_num = -1 # validation we don't split dataset
if self.dataset_split_num == -1:
self.all_data_paths, self.one_category_num = self._pad_paths(original_data_paths, few_shot_data_paths)
self.all_category_num = len(self.all_data_paths.keys())
self.all_category_names = list(self.all_data_paths.keys())
self.original_category_names = list(self.original_data_dirs.keys())
elif self.dataset_split_num > 0:
self.all_data_paths, self.one_category_num, self.original_category_names = self._pad_paths_withnum(original_data_paths, few_shot_data_paths, self.dataset_split_num)
self.all_category_num = len(self.all_data_paths.keys())
self.all_category_names = list(self.all_data_paths.keys())
else:
raise NotImplementedError
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
def _more_back_views(self, back_view_seq, seq):
if len(back_view_seq) == 0:
# for category without back views
return []
factor = 5
# length = (len(seq) // factor) * factor
length = (len(seq) // factor) * (factor - 1)
mul_f = length // len(back_view_seq)
pad_f = length % len(back_view_seq)
new_seq = mul_f * back_view_seq + back_view_seq[:pad_f]
return new_seq
def _get_data_length(self, paths):
data_length = {}
for k,v in paths.items():
length = len(v)
data_length.update({k: length})
return data_length
def _make_sequences(self, path):
result = []
for d in sorted(os.scandir(path), key=lambda e: e.name):
if d.is_dir():
files = self._parse_folder(d)
if len(files) >= 1:
result.append(files)
return result
def _parse_folder(self, path):
result = sorted(glob(os.path.join(path, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
if len(result) <= 0:
return []
return result
def _pad_paths(self, ori_paths, fs_paths):
img_nums = []
all_paths = copy.deepcopy(ori_paths)
all_paths.update(fs_paths)
for _, v in all_paths.items():
img_nums.append(len(v))
img_num = max(img_nums)
img_num = (img_num // self.batch_size) * self.batch_size
for k,v in all_paths.items():
if len(v) < img_num:
mul_time = img_num // len(v)
pad_time = img_num % len(v)
# for each v, shuffle it
shuffle_v = copy.deepcopy(v)
new_v = []
for i in range(mul_time):
new_v = new_v + shuffle_v
random.shuffle(shuffle_v)
del shuffle_v
new_v = new_v + v[0:pad_time]
# new_v = mul_time * v + v[0:pad_time]
all_paths[k] = new_v
elif len(v) > img_num:
all_paths[k] = v[:img_num]
else:
continue
return all_paths, img_num
def _pad_paths_withnum(self, ori_paths, fs_paths, split_num=1000):
img_num = (split_num // self.batch_size) * self.batch_size
all_paths = {}
orig_cat_names = []
for k, v in ori_paths.items():
total_num = ((len(v) // img_num) + 1) * img_num
pad_num = total_num - len(v)
split_num = total_num // img_num
new_v = copy.deepcopy(v)
random.shuffle(new_v)
all_v = v + new_v[:pad_num]
del new_v
for sn in range(split_num):
split_cat_name = f'{k}_' + '%03d' % sn
all_paths.update({
split_cat_name: all_v[sn*img_num: (sn+1)*img_num]
})
orig_cat_names.append(split_cat_name)
for k, v in fs_paths.items():
if len(v) < img_num:
mul_time = img_num // len(v)
pad_time = img_num % len(v)
# for each v, shuffle it
shuffle_v = copy.deepcopy(v)
new_v = []
for i in range(mul_time):
new_v = new_v + shuffle_v
random.shuffle(shuffle_v)
del shuffle_v
new_v = new_v + v[0:pad_time]
# new_v = mul_time * v + v[0:pad_time]
all_paths.update({
k: new_v
})
elif len(v) > img_num:
all_paths.update({
k: v[:img_num]
})
else:
continue
return all_paths, img_num, orig_cat_names
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def _shuffle_all(self):
for k,v in self.all_data_paths.items():
new_v = copy.deepcopy(v)
random.shuffle(new_v)
self.all_data_paths[k] = new_v
return None
def __len__(self):
return self.all_category_num * self.one_category_num
def __getitem__(self, index):
'''
This dataset must have non-shuffled index!!
'''
category_idx = (index % (self.batch_size * self.all_category_num)) // self.batch_size
path_idx = (index // (self.batch_size * self.all_category_num)) * self.batch_size + (index % (self.batch_size * self.all_category_num)) - category_idx * self.batch_size
category_name = self.all_category_names[category_idx]
paths = [self.all_data_paths[category_name][path_idx]] # len 1 sequence
if category_name in self.original_category_names:
bbox_loaders = self.original_bbox_loaders
use_original_bbox = True
else:
bbox_loaders = self.few_shot_bbox_loaders
use_original_bbox = False
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
if not use_original_bbox:
bboxs=torch.cat([bboxs, torch.Tensor([[category_idx]]).float()],dim=-1) # pad a label number
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
# print(paths)
new_dino_data_name = "data_dino_5000"
new_dino_data_path = os.path.join("/viscam/projects/articulated/dor/combine_all_data_for_ablation_magicpony", new_dino_data_name)
# TODO: use another version of DINO here by changing the path
if paths[0].startswith("/viscam/projects/articulated/dor/AnimalsMotionDataset/splitted_data/Combine_data/dinov2_new"):
# 7 cat data
new_dino_path = paths[0].replace(
"/viscam/projects/articulated/dor/AnimalsMotionDataset/splitted_data/Combine_data/dinov2_new",
"/viscam/projects/articulated/zzli/data_dino_5000/7_cat"
)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/few_shot_data_all"):
# 100 cat
dino_path = paths[0].replace(
"/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/few_shot_data_all",
os.path.join(new_dino_data_path, "100_cat")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/projects/articulated/zzli/fs_data/data_resize_update/few_shot_data_all"):
# 100 cat
dino_path = paths[0].replace(
"/viscam/projects/articulated/zzli/fs_data/data_resize_update/few_shot_data_all",
os.path.join(new_dino_data_path, "100_cat")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/segmented_back_view_data"):
# back 100 cat
dino_path = paths[0].replace(
"/viscam/u/zzli/workspace/Animal-Data-Engine/data/data_resize_update/segmented_back_view_data",
os.path.join(new_dino_data_path, "back_100_cat")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
elif paths[0].startswith("/viscam/projects/articulated/dor/Animal-Data-Engine/data/data_resize_update/train_with_classes_filtered"):
# animal3d
dino_path = paths[0].replace(
"/viscam/projects/articulated/dor/Animal-Data-Engine/data/data_resize_update/train_with_classes_filtered",
os.path.join(new_dino_data_path, "animal3D")
)
dino_path_list = dino_path.split("/")
new_dino_path = dino_path_list[:-2] + dino_path_list[-1:] # remove "/train/"
new_dino_path = '/'.join(new_dino_path)
dino_paths = [new_dino_path]
else:
raise NotImplementedError
dino_features = torch.stack(self._load_ids(dino_paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0)
# dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
dino_clusters = torch.zeros(1)
# These are actually no use
seq_idx = 0
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(0, 1).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name
def get_sequence_loader_quadrupeds(original_data_dirs, few_shot_data_dirs, original_num, few_shot_num, rank, world_size, **kwargs):
dataset = Quadrupeds_Image_Dataset(original_data_dirs, few_shot_data_dirs, original_num, few_shot_num, **kwargs)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
shuffle=False
)
loaders = []
loaders += [torch.utils.data.DataLoader(dataset, sampler=sampler, batch_size=kwargs['batch_size'], shuffle=False, drop_last=True, num_workers=kwargs['num_workers'], pin_memory=True)]
return loaders
class Quadrupeds_Image_Test_Dataset(Dataset):
def __init__(self, test_data_dirs, num_sample_frames=2, in_image_size=256, out_image_size=256, shuffle=False, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.png', load_dino_feature=False, dino_feature_dim=64, flow_bool=False, **kwargs):
self.few_shot_data_dirs = test_data_dirs
self.image_loaders = [("rgb"+rgb_suffix, torchvision.datasets.folder.default_loader)]
self.mask_loaders = [("mask.png", torchvision.datasets.folder.default_loader)]
self.original_bbox_loaders = [("box.txt", box_loader)]
self.few_shot_bbox_loaders = [("box.txt", few_shot_box_loader)]
self.num_sample_frames = num_sample_frames
self.batch_size = kwargs['batch_size'] # a hack way here
few_shot_data_paths = {}
for k,v in self.few_shot_data_dirs.items():
if k.startswith('_'):
# a boundary here for dealing with when in new data, we have same categories as in 7-cat
v = v.replace(k, k[1:])
if isinstance(v, str):
result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
elif isinstance(v, list):
result = []
for _v in v:
result = result + sorted(glob(os.path.join(_v, '*'+self.image_loaders[0][0])))
else:
raise NotImplementedError
# result = sorted(glob(os.path.join(v, '*'+self.image_loaders[0][0])))
result = [p.replace(self.image_loaders[0][0], '{}') for p in result]
sequences = result
if shuffle:
random.shuffle(sequences)
few_shot_data_paths.update({k: sequences})
# for visualization purpose
self.pure_fs_data_path = few_shot_data_paths
self.all_data_paths, self.one_category_num = self._pad_paths(few_shot_data_paths)
self.all_category_num = len(self.all_data_paths.keys())
self.all_category_names = list(self.all_data_paths.keys())
self.in_image_size = in_image_size
self.out_image_size = out_image_size
self.load_background = load_background
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.in_image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.out_image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
self.random_flip = random_flip
self.load_dino_feature = load_dino_feature
if load_dino_feature:
self.dino_feature_loaders = [(f"feat{dino_feature_dim}.png", dino_loader, dino_feature_dim)]
def _pad_paths(self, fs_paths):
img_nums = []
all_paths = copy.deepcopy(fs_paths)
for _, v in all_paths.items():
img_nums.append(len(v))
img_num = max(img_nums)
img_num = (img_num // self.batch_size) * self.batch_size
for k,v in all_paths.items():
if len(v) < img_num:
mul_time = img_num // len(v)
pad_time = img_num % len(v)
# for each v, shuffle it
shuffle_v = copy.deepcopy(v)
new_v = []
for i in range(mul_time):
new_v = new_v + shuffle_v
random.shuffle(shuffle_v)
del shuffle_v
new_v = new_v + v[0:pad_time]
# new_v = mul_time * v + v[0:pad_time]
all_paths[k] = new_v
elif len(v) > img_num:
all_paths[k] = v[:img_num]
else:
continue
return all_paths, img_num
def _load_ids(self, path_patterns, loaders, transform=None):
result = []
for loader in loaders:
for p in path_patterns:
x = loader[1](p.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
result.append(x)
return tuple(result)
def _shuffle_all(self):
for k,v in self.all_data_paths.items():
new_v = copy.deepcopy(v)
random.shuffle(new_v)
self.all_data_paths[k] = new_v
return None
def __len__(self):
return self.all_category_num * self.one_category_num
def __getitem__(self, index):
'''
This dataset must have non-shuffled index!!
'''
category_idx = (index % (self.batch_size * self.all_category_num)) // self.batch_size
path_idx = (index // (self.batch_size * self.all_category_num)) * self.batch_size + (index % (self.batch_size * self.all_category_num)) - category_idx * self.batch_size
category_name = self.all_category_names[category_idx]
paths = [self.all_data_paths[category_name][path_idx]] # len 1 sequence
# if category_name in self.original_category_names:
# bbox_loaders = self.original_bbox_loaders
# use_original_bbox = True
# else:
bbox_loaders = self.few_shot_bbox_loaders
use_original_bbox = False
masks = torch.stack(self._load_ids(paths, self.mask_loaders, transform=self.mask_transform), 0) # load all images
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.in_image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_fg), 0) # load all images
images_bg = torch.stack(self._load_ids(paths, self.image_loaders, transform=image_transform_bg), 0) # load all images
images = images_fg * masks + images_bg * (1-masks)
else:
images = torch.stack(self._load_ids(paths, self.image_loaders, transform=self.image_transform), 0) # load all images
flows = torch.zeros(1)
bboxs = torch.stack(self._load_ids(paths, bbox_loaders, transform=torch.FloatTensor), 0) # load bounding boxes for all images
if not use_original_bbox:
bboxs=torch.cat([bboxs, torch.Tensor([[category_idx]]).float()],dim=-1) # pad a label number
mask_valid = get_valid_mask(bboxs, (self.out_image_size, self.out_image_size)) # exclude pixels cropped outside the original image
if self.load_background:
bg_image = torchvision.datasets.folder.default_loader(os.path.join(os.path.dirname(paths[0]), 'background_frame.jpg'))
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_images = crop_image(bg_image, bboxs[:, 1:5].int().numpy(), (self.in_image_size, self.in_image_size))
else:
bg_images = torch.zeros_like(images)
if self.load_dino_feature:
dino_features = torch.stack(self._load_ids(paths, self.dino_feature_loaders, transform=torch.FloatTensor), 0) # BxFx64x224x224
else:
dino_features = torch.zeros(1)
dino_clusters = torch.zeros(1)
# These are actually no use
seq_idx = 0
seq_idx = torch.LongTensor([seq_idx])
frame_idx = torch.arange(0, 1).long()
if self.random_flip and np.random.rand() < 0.5:
images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters = horizontal_flip_all(images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters)
## pad shorter sequence
if len(paths) < self.num_sample_frames:
num_pad = self.num_sample_frames - len(paths)
images = torch.cat([images[:1]] *num_pad + [images], 0)
masks = torch.cat([masks[:1]] *num_pad + [masks], 0)
mask_dt = torch.cat([mask_dt[:1]] *num_pad + [mask_dt], 0)
mask_valid = torch.cat([mask_valid[:1]] *num_pad + [mask_valid], 0)
if flows.dim() > 1:
flows = torch.cat([flows[:1]*0] *num_pad + [flows], 0)
bboxs = torch.cat([bboxs[:1]] * num_pad + [bboxs], 0)
bg_images = torch.cat([bg_images[:1]] *num_pad + [bg_images], 0)
if dino_features.dim() > 1:
dino_features = torch.cat([dino_features[:1]] *num_pad + [dino_features], 0)
if dino_clusters.dim() > 1:
dino_clusters = torch.cat([dino_clusters[:1]] *num_pad + [dino_clusters], 0)
frame_idx = torch.cat([frame_idx[:1]] *num_pad + [frame_idx], 0)
out = (*map(none_to_nan, (images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name)), )
return out
# return images, masks, mask_dt, mask_valid, flows, bboxs, bg_images, dino_features, dino_clusters, seq_idx, frame_idx, category_name
def get_test_loader_quadrupeds(test_data_dirs, rank, world_size, **kwargs):
dataset = Quadrupeds_Image_Test_Dataset(test_data_dirs, **kwargs)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
shuffle=False
)
loaders = []
loaders += [torch.utils.data.DataLoader(dataset, sampler=sampler, batch_size=kwargs['batch_size'], shuffle=False, drop_last=True, num_workers=kwargs['num_workers'], pin_memory=True)]
return loaders
def get_sequence_loader(data_dir, **kwargs):
if isinstance(data_dir, dict):
loaders = []
for k, v in data_dir.items():
dataset= NFrameSequenceDataset(v, cat_name=k, **kwargs)
loader = torch.utils.data.DataLoader(dataset, batch_size=kwargs['batch_size'], shuffle=kwargs['shuffle'], num_workers=kwargs['num_workers'], pin_memory=True)
loaders += [loader]
return loaders
else:
return [get_sequence_loader_single(data_dir, **kwargs)]
def get_sequence_loader_single(data_dir, mode='all_frame', is_validation=False, batch_size=256, num_workers=4, in_image_size=256, out_image_size=256, debug_seq=False, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, max_seq_len=256, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.jpg', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64):
if mode == 'n_frame':
dataset = NFrameSequenceDataset(data_dir, num_sample_frames=num_sample_frames, skip_beginning=skip_beginning, skip_end=skip_end, min_seq_len=min_seq_len, in_image_size=in_image_size, out_image_size=out_image_size, debug_seq=debug_seq, random_sample=random_sample, shuffle=shuffle, dense_sample=dense_sample, color_jitter=color_jitter, load_background=load_background, random_flip=random_flip, rgb_suffix=rgb_suffix, load_dino_feature=load_dino_feature, load_dino_cluster=load_dino_cluster, dino_feature_dim=dino_feature_dim)
else:
raise NotImplementedError
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=not is_validation,
num_workers=num_workers,
pin_memory=True
)
return loader
def get_sequence_loader_ddp(data_dir, world_size, rank, use_few_shot=False, **kwargs):
original_classes_num = 0
use_few_shot = use_few_shot
if isinstance(data_dir, list) and len(data_dir) == 2 and isinstance(data_dir[-1], dict):
# a hack way for few shot experiment
original_classes_num = data_dir[0]
data_dir = data_dir[-1]
if isinstance(data_dir, dict):
loaders = []
cnt = original_classes_num
for k, v in data_dir.items():
if use_few_shot:
dataset = FewShotImageDataset(v, cat_name=k, cat_num=cnt, **kwargs)
cnt += 1
else:
dataset = NFrameSequenceDataset(v, cat_name=k, **kwargs)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
)
loaders += [torch.utils.data.DataLoader(dataset, sampler=sampler, batch_size=kwargs['batch_size'], shuffle=False, drop_last=True, num_workers=kwargs['num_workers'], pin_memory=True)]
return loaders
else:
return [get_sequence_loader_single_ddp(data_dir, world_size, rank, **kwargs)]
def get_sequence_loader_single_ddp(data_dir, world_size, rank, mode='all_frame', is_validation=False, batch_size=256, num_workers=4, in_image_size=256, out_image_size=256, debug_seq=False, num_sample_frames=2, skip_beginning=4, skip_end=4, min_seq_len=10, max_seq_len=256, random_sample=False, shuffle=False, dense_sample=True, color_jitter=None, load_background=False, random_flip=False, rgb_suffix='.jpg', load_dino_feature=False, load_dino_cluster=False, dino_feature_dim=64, flow_bool=False):
if mode == 'n_frame':
dataset = NFrameSequenceDataset(data_dir, num_sample_frames=num_sample_frames, skip_beginning=skip_beginning, skip_end=skip_end, min_seq_len=min_seq_len, in_image_size=in_image_size, out_image_size=out_image_size, debug_seq=debug_seq, random_sample=random_sample, shuffle=shuffle, dense_sample=dense_sample, color_jitter=color_jitter, load_background=load_background, random_flip=random_flip, rgb_suffix=rgb_suffix, load_dino_feature=load_dino_feature, load_dino_cluster=load_dino_cluster, dino_feature_dim=dino_feature_dim, flow_bool=flow_bool)
else:
raise NotImplementedError
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
)
loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
shuffle=False,
drop_last=True,
num_workers=num_workers,
pin_memory=True
)
return loader
class ImageDataset(Dataset):
def __init__(self, root, is_validation=False, image_size=256, color_jitter=None):
super().__init__()
self.image_loader = ("rgb.jpg", torchvision.datasets.folder.default_loader)
self.mask_loader = ("mask.png", torchvision.datasets.folder.default_loader)
self.bbox_loader = ("box.txt", np.loadtxt, 'str')
self.samples = self._parse_folder(root)
self.image_size = image_size
self.color_jitter = color_jitter
self.image_transform = transforms.Compose([transforms.Resize(self.image_size), transforms.ToTensor()])
self.mask_transform = transforms.Compose([transforms.Resize(self.image_size, interpolation=Image.NEAREST), transforms.ToTensor()])
def _parse_folder(self, path):
result = sorted(glob(os.path.join(path, '**/*'+self.image_loader[0]), recursive=True))
result = [p.replace(self.image_loader[0], '{}') for p in result]
return result
def _load_ids(self, path, loader, transform=None):
x = loader[1](path.format(loader[0]), *loader[2:])
if transform:
x = transform(x)
return x
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
path = self.samples[index % len(self.samples)]
masks = self._load_ids(path, self.mask_loader, transform=self.mask_transform).unsqueeze(0)
mask_dt = compute_distance_transform(masks)
jitter = False
if self.color_jitter is not None:
prob, b, h = self.color_jitter
if np.random.rand() < prob:
jitter = True
color_jitter_tsf_fg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_fg = transforms.Compose([transforms.Resize(self.image_size), color_jitter_tsf_fg, transforms.ToTensor()])
color_jitter_tsf_bg = transforms.ColorJitter.get_params(brightness=(1-b, 1+b), contrast=None, saturation=None, hue=(-h, h))
image_transform_bg = transforms.Compose([transforms.Resize(self.image_size), color_jitter_tsf_bg, transforms.ToTensor()])
if jitter:
images_fg = self._load_ids(path, self.image_loader, transform=image_transform_fg).unsqueeze(0)
images_bg = self._load_ids(path, self.image_loader, transform=image_transform_bg).unsqueeze(0)
images = images_fg * masks + images_bg * (1-masks)
else:
images = self._load_ids(path, self.image_loader, transform=self.image_transform).unsqueeze(0)
flows = torch.zeros(1)
bboxs = self._load_ids(path, self.bbox_loader, transform=None)
bboxs[0] = '0'
bboxs = torch.FloatTensor(bboxs.astype('float')).unsqueeze(0)
bg_fpath = os.path.join(os.path.dirname(path), 'background_frame.jpg')
if os.path.isfile(bg_fpath):
bg_image = torchvision.datasets.folder.default_loader(bg_fpath)
if jitter:
bg_image = color_jitter_tsf_bg(bg_image)
bg_image = transforms.ToTensor()(bg_image)
else:
bg_image = images[0]
seq_idx = torch.LongTensor([index])
frame_idx = torch.LongTensor([0])
return images, masks, mask_dt, flows, bboxs, bg_image, seq_idx, frame_idx
def get_image_loader(data_dir, is_validation=False, batch_size=256, num_workers=4, image_size=256, color_jitter=None):
dataset = ImageDataset(data_dir, is_validation=is_validation, image_size=image_size, color_jitter=color_jitter)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True
)
return loader
def get_image_loader_ddp(data_dir, world_size, rank, is_validation=False, batch_size=256, num_workers=4, image_size=256, color_jitter=None):
dataset = ImageDataset(data_dir, is_validation=is_validation, image_size=image_size, color_jitter=color_jitter)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
)
loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
shuffle=False,
drop_last=True,
num_workers=num_workers,
pin_memory=True
)
return loader