Spaces:
Sleeping
Sleeping
# Taken from RAFT | |
import torch.nn.functional as F | |
class InputPadder: | |
""" Pads images such that dimensions are divisible by 8 """ | |
def __init__(self, dims, mode='sintel'): | |
self.ht, self.wd = dims[-2:] | |
pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8 | |
pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8 | |
if mode == 'sintel': | |
self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2] | |
else: | |
self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht] | |
def pad(self, *inputs): | |
return [F.pad(x, self._pad, mode='replicate') for x in inputs] | |
def unpad(self,x): | |
ht, wd = x.shape[-2:] | |
c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]] | |
return x[..., c[0]:c[1], c[2]:c[3]] | |