3DFauna_demo / video3d /networks.py
kyleleey
first commit
98a77e0
raw
history blame
67.7 kB
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.models as models
from typing import Union, List, Tuple
import os
import video3d.utils.misc as misc
import torch.nn.functional as F
from siren_pytorch import SirenNet
from video3d.triplane_texture.lift_architecture import Lift_Encoder
from video3d.triplane_texture.triplane_transformer import Triplane_Transformer
EPS = 1e-7
def get_activation(name, inplace=True, lrelu_param=0.2):
if name == 'tanh':
return nn.Tanh()
elif name == 'sigmoid':
return nn.Sigmoid()
elif name == 'relu':
return nn.ReLU(inplace=inplace)
elif name == 'lrelu':
return nn.LeakyReLU(lrelu_param, inplace=inplace)
else:
raise NotImplementedError
class MLPWithPositionalEncoding(nn.Module):
def __init__(self,
cin,
cout,
num_layers,
nf=256,
dropout=0,
activation=None,
n_harmonic_functions=10,
omega0=1,
extra_dim=0,
embed_concat_pts=True,
symmetrize=False):
super().__init__()
self.extra_dim = extra_dim
if n_harmonic_functions > 0:
self.embedder = HarmonicEmbedding(n_harmonic_functions, omega0)
dim_in = cin * 2 * n_harmonic_functions
self.embed_concat_pts = embed_concat_pts
if embed_concat_pts:
dim_in += cin
else:
self.embedder = None
dim_in = cin
self.in_layer = nn.Linear(dim_in, nf)
self.relu = nn.ReLU(inplace=True)
self.mlp = MLP(nf + extra_dim, cout, num_layers, nf, dropout, activation)
self.symmetrize = symmetrize
def forward(self, x, feat=None):
assert (feat is None and self.extra_dim == 0) or feat.shape[-1] == self.extra_dim
if self.symmetrize:
xs, ys, zs = x.unbind(-1)
x = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
if self.embedder is not None:
x_in = self.embedder(x)
if self.embed_concat_pts:
x_in = torch.cat([x, x_in], -1)
else:
x_in = x
x_in = self.relu(self.in_layer(x_in))
if feat is not None:
# if len(feat.shape) == 1:
# for _ in range(len(x_in.shape) - 1):
# feat = feat.unsqueeze(0)
# feat = feat.repeat(*x_in.shape[:-1], 1)
x_in = torch.concat([x_in, feat], dim=-1)
return self.mlp(x_in)
class MLPWithPositionalEncoding_Style(nn.Module):
def __init__(self,
cin,
cout,
num_layers,
nf=256,
dropout=0,
activation=None,
n_harmonic_functions=10,
omega0=1,
extra_dim=0,
embed_concat_pts=True,
symmetrize=False,
style_choice='film'):
super().__init__()
self.extra_dim = extra_dim
if n_harmonic_functions > 0:
self.embedder = HarmonicEmbedding(n_harmonic_functions, omega0)
dim_in = cin * 2 * n_harmonic_functions
self.embed_concat_pts = embed_concat_pts
if embed_concat_pts:
dim_in += cin
else:
self.embedder = None
dim_in = cin
self.in_layer = nn.Linear(dim_in, nf)
self.relu = nn.ReLU(inplace=True)
if extra_dim == 0:
self.mlp = MLP(nf + extra_dim, cout, num_layers, nf, dropout, activation)
else:
if style_choice == 'film':
self.mlp = MLP_FiLM(nf, cout, num_layers, nf, dropout, activation)
self.style_mlp = MLP(extra_dim, nf*2, 2, nf, dropout, None)
elif style_choice == 'mod':
self.mlp = MLP_Mod(nf, cout, num_layers, nf, dropout, activation)
self.style_mlp = MLP(extra_dim, nf, 2, nf, dropout, None)
else:
raise NotImplementedError
self.style_choice = style_choice
self.symmetrize = symmetrize
def forward(self, x, feat=None):
assert (feat is None and self.extra_dim == 0) or feat.shape[-1] == self.extra_dim
if self.symmetrize:
xs, ys, zs = x.unbind(-1)
x = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
if self.embedder is not None:
x_in = self.embedder(x)
if self.embed_concat_pts:
x_in = torch.cat([x, x_in], -1)
else:
x_in = x
x_in = self.relu(self.in_layer(x_in))
if feat is not None:
style = self.style_mlp(feat)
if self.style_choice == 'film':
style = style.reshape(style.shape[:-1] + (-1, 2))
out = self.mlp(x_in, style)
else:
out = self.mlp(x_in)
return out
class MLP_FiLM(nn.Module):
def __init__(self, cin, cout, num_layers, nf=256, dropout=0, activation=None):
# default no dropout
super().__init__()
assert num_layers >= 1
self.num_layers = num_layers
if num_layers == 1:
self.network = Linear_FiLM(cin, cout, bias=False)
else:
self.relu = nn.ReLU(inplace=True)
for i in range(num_layers):
if i == 0:
setattr(self, f'linear_{i}', Linear_FiLM(cin, nf, bias=False))
elif i == (num_layers-1):
setattr(self, f'linear_{i}', Linear_FiLM(nf, cout, bias=False))
else:
setattr(self, f'linear_{i}', Linear_FiLM(nf, nf, bias=False))
def forward(self, input, style):
if self.num_layers == 1:
out = self.network(input, style)
else:
x = input
for i in range(self.num_layers):
linear_layer = getattr(self, f'linear_{i}')
if i == (self.num_layers - 1):
x = linear_layer(x, style)
else:
x = linear_layer(x, style)
x = self.relu(x)
out = x
return out
class MLP_Mod(nn.Module):
def __init__(self, cin, cout, num_layers, nf=256, dropout=0, activation=None):
# default no dropout
super().__init__()
assert num_layers >= 1
self.num_layers = num_layers
if num_layers == 1:
self.network = Linear_Mod(cin, cout, bias=False)
else:
self.relu = nn.ReLU(inplace=True)
for i in range(num_layers):
if i == 0:
setattr(self, f'linear_{i}', Linear_Mod(cin, nf, bias=False))
elif i == (num_layers-1):
setattr(self, f'linear_{i}', Linear_Mod(nf, cout, bias=False))
else:
setattr(self, f'linear_{i}', Linear_Mod(nf, nf, bias=False))
def forward(self, input, style):
if self.num_layers == 1:
out = self.network(input, style)
else:
x = input
for i in range(self.num_layers):
linear_layer = getattr(self, f'linear_{i}')
if i == (self.num_layers - 1):
x = linear_layer(x, style)
else:
x = linear_layer(x, style)
x = self.relu(x)
out = x
return out
import math
class Linear_FiLM(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs))
if bias:
self.bias = nn.Parameter(torch.empty(out_features, **factory_kwargs))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self) -> None:
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input, style):
# if input is [..., D], style should be [..., D, 2]
x = input * style[..., 0] + style[..., 1]
return torch.nn.functional.linear(x, self.weight, self.bias)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class Linear_Mod(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs))
if bias:
self.bias = nn.Parameter(torch.empty(out_features, **factory_kwargs))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self) -> None:
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input, style):
# weight: [out_features, in_features]
# style: [..., in_features]
if len(style.shape) > 1:
style = style.reshape(-1, style.shape[-1])
style = style[0]
weight = self.weight * style.unsqueeze(0)
decoefs = ((weight * weight).sum(dim=-1, keepdim=True) + 1e-5).sqrt()
weight = weight / decoefs
return torch.nn.functional.linear(input, weight, self.bias)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class MLPTextureSimple(nn.Module):
def __init__(self,
cin,
cout,
num_layers,
nf=256,
dropout=0,
activation=None,
min_max=None,
n_harmonic_functions=10,
omega0=1,
extra_dim=0,
embed_concat_pts=True,
perturb_normal=False,
symmetrize=False,
texture_act='relu',
linear_bias=False):
super().__init__()
self.extra_dim = extra_dim
if n_harmonic_functions > 0:
self.embedder = HarmonicEmbedding(n_harmonic_functions, omega0)
dim_in = cin * 2 * n_harmonic_functions
self.embed_concat_pts = embed_concat_pts
if embed_concat_pts:
dim_in += cin
else:
self.embedder = None
dim_in = cin
self.in_layer = nn.Linear(dim_in, nf)
self.relu = nn.ReLU(inplace=True)
if texture_act == 'sin':
print('using siren network for texture mlp here')
self.mlp = SirenNet(
dim_in=(nf + extra_dim),
dim_hidden=nf,
dim_out=cout,
num_layers=num_layers,
final_activation=get_activation(activation),
w0_initial=30,
use_bias=linear_bias,
dropout=dropout
)
else:
self.mlp = MLP(nf + extra_dim, cout, num_layers, nf, dropout, activation, inner_act=texture_act, linear_bias=linear_bias)
self.perturb_normal = perturb_normal
self.symmetrize = symmetrize
if min_max is not None:
self.register_buffer('min_max', min_max)
else:
self.min_max = None
self.bsdf = None
def sample(self, x, feat=None):
assert (feat is None and self.extra_dim == 0) or (feat.shape[-1] == self.extra_dim)
b, h, w, c = x.shape
if self.symmetrize:
xs, ys, zs = x.unbind(-1)
x = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
x = x.view(-1, c)
if self.embedder is not None:
x_in = self.embedder(x)
if self.embed_concat_pts:
x_in = torch.cat([x, x_in], -1)
else:
x_in = x
x_in = self.in_layer(x_in)
if feat is not None:
feat = feat[:,None,None].expand(b, h, w, -1).reshape(b*h*w, -1)
x_in = torch.concat([x_in, feat], dim=-1)
out = self.mlp(self.relu(x_in))
if self.min_max is not None:
out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :]
return out.view(b, h, w, -1)
class MLPTextureTriplane(nn.Module):
def __init__(self,
cin,
cout,
num_layers,
nf=256,
dropout=0,
activation=None,
min_max=None,
n_harmonic_functions=10,
omega0=1,
extra_dim=0,
embed_concat_pts=True,
perturb_normal=False,
symmetrize=False,
texture_act='relu',
linear_bias=False,
cam_pos_z_offset=10.,
grid_scale=7,):
super().__init__()
self.extra_dim = extra_dim
if n_harmonic_functions > 0:
self.embedder = HarmonicEmbedding(n_harmonic_functions, omega0)
dim_in = cin * 2 * n_harmonic_functions
self.embed_concat_pts = embed_concat_pts
if embed_concat_pts:
dim_in += cin
else:
self.embedder = None
dim_in = cin
self.in_layer = nn.Linear(dim_in, nf)
self.relu = nn.ReLU(inplace=True)
self.feat_net = Triplane_Transformer(
emb_dim=256,
num_layers=8,
triplane_dim=80,
triplane_scale=grid_scale
)
self.extra_dim -= extra_dim
self.extra_dim += (self.feat_net.triplane_dim * 3)
if texture_act == 'sin':
print('using siren network for texture mlp here')
self.mlp = SirenNet(
dim_in=(nf + self.extra_dim),
dim_hidden=nf,
dim_out=cout,
num_layers=num_layers,
final_activation=get_activation(activation),
w0_initial=30,
use_bias=linear_bias,
dropout=dropout
)
else:
self.mlp = MLP(nf + self.extra_dim, cout, num_layers, nf, dropout, activation, inner_act=texture_act, linear_bias=linear_bias)
self.perturb_normal = perturb_normal
self.symmetrize = symmetrize
if min_max is not None:
self.register_buffer('min_max', min_max)
else:
self.min_max = None
self.bsdf = None
def sample(self, x, feat=None, feat_map=None, mvp=None, w2c=None, deform_xyz=None):
# assert (feat is None and self.extra_dim == 0) or (feat.shape[-1] == self.extra_dim)
b, h, w, c = x.shape
if self.symmetrize:
xs, ys, zs = x.unbind(-1)
x = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
if isinstance(feat_map, dict):
feat_map = feat_map["im_features_map"]
feat_map = feat_map.permute(0, 2, 3, 1)
_, ph, pw, _ = feat_map.shape
feat_map = feat_map.reshape(feat_map.shape[0], ph*pw, feat_map.shape[-1])
pts_feat = self.feat_net(feat_map, x.reshape(b, -1, 3))
pts_c = pts_feat.shape[-1]
pts_feat = pts_feat.reshape(-1, pts_c)
x = x.view(-1, c)
if self.embedder is not None:
x_in = self.embedder(x)
if self.embed_concat_pts:
x_in = torch.cat([x, x_in], -1)
else:
x_in = x
x_in = self.in_layer(x_in)
x_in = torch.concat([x_in, pts_feat], dim=-1)
out = self.mlp(self.relu(x_in))
if self.min_max is not None:
out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :]
return out.view(b, h, w, -1)
class LocalFeatureBlock(nn.Module):
def __init__(self, local_feat_dim, input_dim=384, output_dim=384, upscale_num=3):
super().__init__()
self.local_feat_dim = local_feat_dim
self.conv_list = nn.ModuleList([])
self.upscale_list = nn.ModuleList([])
for i in range(upscale_num):
if i == 0:
self.conv_list.append(nn.Conv2d(input_dim, 4 * local_feat_dim, 3, stride=1, padding=1, dilation=1))
else:
self.conv_list.append(nn.Conv2d(local_feat_dim, 4 * local_feat_dim, 3, stride=1, padding=1, dilation=1))
self.upscale_list.append(nn.PixelShuffle(2))
self.conv_head = nn.Conv2d(local_feat_dim, output_dim, 3, stride=1, padding=1, dilation=1)
def forward(self, x):
for idx, conv in enumerate(self.conv_list):
x = conv(x)
x = self.upscale_list[idx](x)
out = self.conv_head(x)
return out
class MLPTextureLocal(nn.Module):
def __init__(self,
cin,
cout,
num_layers,
nf=256,
dropout=0,
activation=None,
min_max=None,
n_harmonic_functions=10,
omega0=1,
extra_dim=0,
embed_concat_pts=True,
perturb_normal=False,
symmetrize=False,
texture_way=None,
larger_tex_dim=False,
cam_pos_z_offset=10.,
grid_scale=7.):
super().__init__()
self.extra_dim = extra_dim
self.cam_pos_z_offset = cam_pos_z_offset
self.grid_scale = grid_scale
local_feat_dim = 64
assert texture_way is not None
self.texture_way = texture_way
if 'local' in texture_way and 'global' in texture_way:
# self.extra_dim = extra_dim + local_feat_dim
self.extra_dim = extra_dim
elif 'local' in texture_way and 'global' not in texture_way:
# self.extra_dim = local_feat_dim
self.extra_dim = extra_dim
elif 'local' not in texture_way and 'global' in texture_way:
self.extra_dim = extra_dim
if n_harmonic_functions > 0:
self.embedder = HarmonicEmbedding(n_harmonic_functions, omega0)
dim_in = cin * 2 * n_harmonic_functions
self.embed_concat_pts = embed_concat_pts
if embed_concat_pts:
dim_in += cin
else:
self.embedder = None
dim_in = cin
# self.local_feature_block = LocalFeatureBlock(local_feat_dim=local_feat_dim, input_dim=384, output_dim=256)
self.local_feature_block = nn.Linear(384, nf, bias=False)
self.in_layer = nn.Linear(dim_in, nf)
self.relu = nn.ReLU(inplace=True)
self.mlp = MLP(nf + self.extra_dim, cout, num_layers, nf, dropout, activation)
self.perturb_normal = perturb_normal
self.symmetrize = symmetrize
if min_max is not None:
self.register_buffer('min_max', min_max)
else:
self.min_max = None
self.bsdf = None
def get_uv_depth(self, xyz, mvp):
# xyz: [b, k, 3]
# mvp: [b, 4, 4]
cam4 = torch.matmul(torch.nn.functional.pad(xyz, pad=(0,1), mode='constant', value=1.0), torch.transpose(mvp, 1, 2))
cam3 = cam4[..., :3] / cam4[..., 3:4]
cam_uv = cam3[..., :2]
# cam_uv = cam_uv.detach()
cam_depth = cam3 + torch.FloatTensor([0, 0, self.cam_pos_z_offset]).to(xyz.device).view(1, 1, 3)
cam_depth = cam_depth / self.grid_scale * 2
cam_depth = cam_depth[..., 2:3]
# cam_depth = cam_depth.detach()
return cam_uv, cam_depth
def proj_sample_deform(self, xyz, feat_map, mvp, w2c, img_h, img_w):
# here the xyz is deformed points
# and we don't cast any symmtery here
b, k, c = xyz.shape
THRESHOLD = 1e-4
if isinstance(feat_map, torch.Tensor):
coordinates = xyz
# use pre-symmetry points to get feature and record depth
cam_uv, cam_depth = self.get_uv_depth(coordinates, mvp)
cam_uv = cam_uv.detach()
cam_depth = cam_depth.detach()
# get local feature
feature = F.grid_sample(feat_map, cam_uv.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, c]
self.input_depth = cam_depth.reshape(b, 256, 256, 1) # [B, 256, 256, 1]
self.input_pts = coordinates.detach()
elif isinstance(feat_map, dict):
original_mvp = feat_map['original_mvp']
local_feat_map = feat_map['im_features_map']
original_depth = self.input_depth[0:b]
coordinates = xyz
cam_uv, cam_depth = self.get_uv_depth(coordinates, original_mvp)
cam_uv = cam_uv.detach()
cam_depth = cam_depth.detach()
project_feature = F.grid_sample(local_feat_map, cam_uv.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, c]
project_depth = F.grid_sample(original_depth.permute(0, 3, 1, 2), cam_uv.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, 1]
use_mask = cam_depth <= project_depth + THRESHOLD
feature = project_feature * use_mask.repeat(1, 1, project_feature.shape[-1])
ret_feature = self.local_feature_block(feature.reshape(b*k, -1)) # the linear is without bias, so 0 value feature will still get 0 value
return ret_feature
def proj_sample(self, xyz, feat_map, mvp, w2c, img_h, img_w, xyz_before_sym=None):
# the new one with no input feature map upsampling
# feat_map: [B, C, H, W]
b, k, c = xyz.shape
if isinstance(feat_map, torch.Tensor):
if xyz_before_sym is None:
coordinates = xyz
else:
coordinates = xyz_before_sym
# use pre-symmetry points to get feature and record depth
cam_uv, cam_depth = self.get_uv_depth(coordinates, mvp)
cam_uv = cam_uv.detach()
cam_depth = cam_depth.detach()
# get local feature
feature = F.grid_sample(feat_map, cam_uv.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, c]
self.input_depth = cam_depth.reshape(b, 256, 256, 1) # [B, 256, 256, 1]
self.input_pts = coordinates.detach()
elif isinstance(feat_map, dict):
original_mvp = feat_map['original_mvp']
local_feat_map = feat_map['im_features_map']
THRESHOLD = 1e-4
original_depth = self.input_depth[0:b]
# if b == 1:
# from pdb import set_trace; set_trace()
# tmp_mask = xyz[0].reshape(256, 256, 3).sum(dim=-1) != 0
# tmp_mask = tmp_mask.cpu().numpy()
# tmp_mask = tmp_mask * 255
# src_dp = self.input_depth[0,:,:,0].cpu().numpy()
# input_pts = self.input_pts[0].cpu().numpy()
# input_mask = self.input_pts[0].reshape(256, 256, 3).sum(dim=-1) != 0
# input_mask = input_mask.int().cpu().numpy()
# input_mask = input_mask * 255
# np.save('./tmp_save/src_dp.npy', src_dp)
# np.save('./tmp_save/input_pts.npy', input_pts)
# import cv2
# cv2.imwrite('./tmp_save/input_mask.png', input_mask)
# cv2.imwrite('./tmp_save/mask.png', tmp_mask)
# test_pts_pos = xyz[0].cpu().numpy()
# np.save('./tmp_save/test_pts_pos.npy', test_pts_pos)
# test_pts_raw = xyz_before_sym[0].cpu().numpy()
# np.save('./tmp_save/test_pts_raw.npy', test_pts_raw)
# mvp_now = mvp[0].detach().cpu().numpy()
# mvp_original = original_mvp[0].detach().cpu().numpy()
# np.save('./tmp_save/mvp_now.npy', mvp_now)
# np.save('./tmp_save/mvp_original.npy', mvp_original)
if xyz_before_sym is None:
# just check the project depth of xyz
coordinates = xyz
cam_uv, cam_depth = self.get_uv_depth(coordinates, original_mvp)
cam_uv = cam_uv.detach()
cam_depth = cam_depth.detach()
project_feature = F.grid_sample(local_feat_map, cam_uv.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, c]
project_depth = F.grid_sample(original_depth.permute(0, 3, 1, 2), cam_uv.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, 1]
use_mask = cam_depth <= project_depth + THRESHOLD
feature = project_feature * use_mask.repeat(1, 1, project_feature.shape[-1])
else:
# need to double check, but now we are still use symmetry! Even if the two points are all visible in input view
coords_inp = xyz
x_check, y_check, z_check = xyz.unbind(-1)
xyz_check = torch.stack([-1 * x_check, y_check, z_check], -1)
coords_rev = xyz_check # we directly use neg-x to get the points of another side
uv_inp, dp_inp = self.get_uv_depth(coords_inp, original_mvp)
uv_rev, dp_rev = self.get_uv_depth(coords_rev, original_mvp)
uv_inp = uv_inp.detach()
uv_rev = uv_rev.detach()
dp_inp = dp_inp.detach()
dp_rev = dp_rev.detach()
proj_feat_inp = F.grid_sample(local_feat_map, uv_inp.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, c]
proj_feat_rev = F.grid_sample(local_feat_map, uv_rev.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, c]
proj_dp_inp = F.grid_sample(original_depth.permute(0, 3, 1, 2), uv_inp.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, 1]
proj_dp_rev = F.grid_sample(original_depth.permute(0, 3, 1, 2), uv_rev.view(b, 1, k, 2), mode='bilinear').squeeze(dim=-2).permute(0, 2, 1) # [b, k, 1]
use_mask_inp = dp_inp <= proj_dp_inp + THRESHOLD
use_mask_rev = dp_rev <= proj_dp_rev + THRESHOLD
# for those points we can see in two sides, we use average
use_mask_inp = use_mask_inp.int()
use_mask_rev = use_mask_rev.int()
both_vis = (use_mask_inp == 1) & (use_mask_rev == 1)
use_mask_inp[both_vis] = 0.5
use_mask_rev[both_vis] = 0.5
feature = proj_feat_inp * use_mask_inp.repeat(1, 1, proj_feat_inp.shape[-1]) + proj_feat_rev * use_mask_rev.repeat(1, 1, proj_feat_rev.shape[-1])
else:
raise NotImplementedError
ret_feature = self.local_feature_block(feature.reshape(b*k, -1)) # the linear is without bias, so 0 value feature will still get 0 value
return ret_feature
def sample(self, x, feat=None, feat_map=None, mvp=None, w2c=None, deform_xyz=None):
# assert (feat is None and self.extra_dim == 0) or (feat.shape[-1] <= self.extra_dim)
b, h, w, c = x.shape
xyz_before_sym = None
if self.symmetrize:
xyz_before_sym = x.reshape(b, -1, c)
xs, ys, zs = x.unbind(-1)
x = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
mvp = mvp.detach() # [b, 4, 4]
w2c = w2c.detach() # [b, 4, 4]
pts_xyz = x.reshape(b, -1, c)
deform_xyz = deform_xyz.reshape(b, -1, c)
if 'global' in self.texture_way and 'local' in self.texture_way:
global_feat = feat[:,None,None].expand(b, h, w, -1).reshape(b*h*w, -1)
# local_feat = self.proj_sample(pts_xyz, feat_map, mvp, w2c, h, w, xyz_before_sym=xyz_before_sym)
local_feat = self.proj_sample_deform(deform_xyz, feat_map, mvp, w2c, h, w)
# feature_rep = torch.concat([global_feat, local_feat], dim=-1)
feature_rep = global_feat + local_feat
elif 'global' not in self.texture_way and 'local' in self.texture_way:
# local_feat = self.proj_sample(pts_xyz, feat_map, mvp, w2c, h, w, xyz_before_sym=xyz_before_sym)
local_feat = self.proj_sample_deform(deform_xyz, feat_map, mvp, w2c, h, w)
feature_rep = local_feat
elif 'global' in self.texture_way and 'local' not in self.texture_way:
global_feat = feat[:,None,None].expand(b, h, w, -1).reshape(b*h*w, -1)
feature_rep = global_feat
else:
global_feat = feat[:,None,None].expand(b, h, w, -1).reshape(b*h*w, -1)
feature_rep = global_feat
x = x.view(-1, c)
if self.embedder is not None:
x_in = self.embedder(x)
if self.embed_concat_pts:
x_in = torch.cat([x, x_in], -1)
else:
x_in = x
x_in = self.in_layer(x_in)
# if feat is not None:
# feat = feat[:,None,None].expand(b, h, w, -1).reshape(b*h*w, -1)
# x_in = torch.concat([x_in, feat], dim=-1)
x_in = torch.concat([x_in, feature_rep], dim=-1)
out = self.mlp(self.relu(x_in))
if self.min_max is not None:
out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :]
return out.view(b, h, w, -1)
class LiftTexture(nn.Module):
def __init__(self,
cin,
cout,
num_layers,
nf=256,
dropout=0,
activation=None,
min_max=None,
n_harmonic_functions=10,
omega0=1,
extra_dim=0,
embed_concat_pts=True,
perturb_normal=False,
symmetrize=False,
texture_way=None,
cam_pos_z_offset=10.,
grid_scale=7.,
local_feat_dim=128,
grid_size=32,
optim_latent=False):
super().__init__()
self.extra_dim = extra_dim
self.cam_pos_z_offset = cam_pos_z_offset
self.grid_scale = grid_scale
assert texture_way is not None
self.extra_dim = local_feat_dim + extra_dim
if n_harmonic_functions > 0:
self.embedder = HarmonicEmbedding(n_harmonic_functions, omega0)
dim_in = cin * 2 * n_harmonic_functions
self.embed_concat_pts = embed_concat_pts
if embed_concat_pts:
dim_in += cin
else:
self.embedder = None
dim_in = cin
self.encoder = Lift_Encoder(
cin=384,
feat_dim=local_feat_dim,
grid_scale=grid_scale / 2, # the dmtet is initialized in (-0.5, 0.5)
grid_size=grid_size,
optim_latent=optim_latent,
with_z_feature=True,
cam_pos_z_offset=cam_pos_z_offset
)
self.in_layer = nn.Linear(dim_in, nf)
self.relu = nn.ReLU(inplace=True)
self.mlp = MLP(nf + self.extra_dim, cout, num_layers, nf, dropout, activation)
self.perturb_normal = perturb_normal
self.symmetrize = symmetrize
if min_max is not None:
self.register_buffer('min_max', min_max)
else:
self.min_max = None
self.bsdf = None
def get_uv_depth(self, xyz, mvp):
# xyz: [b, k, 3]
# mvp: [b, 4, 4]
cam4 = torch.matmul(torch.nn.functional.pad(xyz, pad=(0,1), mode='constant', value=1.0), torch.transpose(mvp, 1, 2))
cam3 = cam4[..., :3] / cam4[..., 3:4]
cam_uv = cam3[..., :2]
# cam_uv = cam_uv.detach()
cam_depth = cam3 + torch.FloatTensor([0, 0, self.cam_pos_z_offset]).to(xyz.device).view(1, 1, 3)
cam_depth = cam_depth / self.grid_scale * 2
cam_depth = cam_depth[..., 2:3]
# cam_depth = cam_depth.detach()
return cam_uv, cam_depth
def proj_sample_deform(self, xyz, feat_map, mvp, w2c, img_h, img_w):
# here the xyz is deformed points
# and we don't cast any symmtery here
if isinstance(feat_map, torch.Tensor):
feature = self.encoder(feat_map, mvp, xyz, inference="unproject")
elif isinstance(feat_map, dict):
feature = self.encoder(feat_map['im_features_map'], mvp, xyz, inference="sample")
C = feature.shape[-1]
feature = feature.reshape(-1, C)
return feature
def sample(self, x, feat=None, feat_map=None, mvp=None, w2c=None, deform_xyz=None):
# assert (feat is None and self.extra_dim == 0) or (feat.shape[-1] <= self.extra_dim)
b, h, w, c = x.shape
xyz_before_sym = None
if self.symmetrize:
xyz_before_sym = x.reshape(b, -1, c)
xs, ys, zs = x.unbind(-1)
x = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x
mvp = mvp.detach() # [b, 4, 4]
w2c = w2c.detach() # [b, 4, 4]
pts_xyz = x.reshape(b, -1, c)
deform_xyz = deform_xyz.reshape(b, -1, c)
global_feat = feat[:,None,None].expand(b, h, w, -1).reshape(b*h*w, -1)
local_feat = self.proj_sample_deform(deform_xyz, feat_map, mvp, w2c, h, w)
feature_rep = torch.concat([global_feat, local_feat], dim=-1)
x = x.view(-1, c)
if self.embedder is not None:
x_in = self.embedder(x)
if self.embed_concat_pts:
x_in = torch.cat([x, x_in], -1)
else:
x_in = x
x_in = self.in_layer(x_in)
# if feat is not None:
# feat = feat[:,None,None].expand(b, h, w, -1).reshape(b*h*w, -1)
# x_in = torch.concat([x_in, feat], dim=-1)
x_in = torch.concat([x_in, feature_rep], dim=-1)
out = self.mlp(self.relu(x_in))
if self.min_max is not None:
out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :]
return out.view(b, h, w, -1)
class HarmonicEmbedding(nn.Module):
def __init__(self, n_harmonic_functions=10, omega0=1):
"""
Positional Embedding implementation (adapted from Pytorch3D).
Given an input tensor `x` of shape [minibatch, ... , dim],
the harmonic embedding layer converts each feature
in `x` into a series of harmonic features `embedding`
as follows:
embedding[..., i*dim:(i+1)*dim] = [
sin(x[..., i]),
sin(2*x[..., i]),
sin(4*x[..., i]),
...
sin(2**self.n_harmonic_functions * x[..., i]),
cos(x[..., i]),
cos(2*x[..., i]),
cos(4*x[..., i]),
...
cos(2**self.n_harmonic_functions * x[..., i])
]
Note that `x` is also premultiplied by `omega0` before
evaluting the harmonic functions.
"""
super().__init__()
self.frequencies = omega0 * (2.0 ** torch.arange(n_harmonic_functions))
def forward(self, x):
"""
Args:
x: tensor of shape [..., dim]
Returns:
embedding: a harmonic embedding of `x`
of shape [..., n_harmonic_functions * dim * 2]
"""
embed = (x[..., None] * self.frequencies.to(x.device)).view(*x.shape[:-1], -1)
return torch.cat((embed.sin(), embed.cos()), dim=-1)
class VGGEncoder(nn.Module):
def __init__(self, cout, pretrained=False):
super().__init__()
if pretrained:
raise NotImplementedError
vgg = models.vgg16()
self.vgg_encoder = nn.Sequential(vgg.features, vgg.avgpool)
self.linear1 = nn.Linear(25088, 4096)
self.linear2 = nn.Linear(4096, cout)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
batch_size, _, _, _ = x.shape
out = self.relu(self.linear1(self.vgg_encoder(x).view(batch_size, -1)))
return self.linear2(out)
class ResnetEncoder(nn.Module):
def __init__(self, cout, pretrained=False):
super().__init__()
self.resnet = nn.Sequential(list(models.resnet18(weights="DEFAULT" if pretrained else None).modules())[:-1])
self.final_linear = nn.Linear(512, cout)
def forward(self, x):
return self.final_linear(self.resnet(x))
class Encoder(nn.Module):
def __init__(self, cin, cout, in_size=128, zdim=None, nf=64, activation=None):
super().__init__()
network = [
nn.Conv2d(cin, nf, kernel_size=4, stride=2, padding=1, bias=False), # 128x128 -> 64x64
nn.GroupNorm(16, nf),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, nf*2, kernel_size=4, stride=2, padding=1, bias=False), # 64x64 -> 32x32
nn.GroupNorm(16*2, nf*2),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf*2, nf*4, kernel_size=4, stride=2, padding=1, bias=False), # 32x32 -> 16x16
nn.GroupNorm(16*4, nf*4),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf*4, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 8x8
# nn.GroupNorm(16*8, nf*8),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
]
add_downsample = int(np.log2(in_size//128))
if add_downsample > 0:
for _ in range(add_downsample):
network += [
nn.Conv2d(nf*8, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 8x8
# nn.GroupNorm(16*8, nf*8),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
]
network += [
nn.Conv2d(nf*8, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 8x8 -> 4x4
nn.LeakyReLU(0.2, inplace=True),
]
if zdim is None:
network += [
nn.Conv2d(nf*8, cout, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
]
else:
network += [
nn.Conv2d(nf*8, zdim, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(zdim, cout, kernel_size=1, stride=1, padding=0, bias=False),
]
if activation is not None:
network += [get_activation(activation)]
self.network = nn.Sequential(*network)
def forward(self, input):
return self.network(input).reshape(input.size(0), -1)
class EncoderWithDINO(nn.Module):
def __init__(self, cin_rgb, cin_dino, cout, in_size=128, zdim=None, nf=64, activation=None):
super().__init__()
network_rgb_in = [
nn.Conv2d(cin_rgb, nf, kernel_size=4, stride=2, padding=1, bias=False), # 128x128 -> 64x64
nn.GroupNorm(16, nf),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, nf*2, kernel_size=4, stride=2, padding=1, bias=False), # 64x64 -> 32x32
nn.GroupNorm(16*2, nf*2),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf*2, nf*4, kernel_size=4, stride=2, padding=1, bias=False), # 32x32 -> 16x16
nn.GroupNorm(16*4, nf*4),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
]
self.network_rgb_in = nn.Sequential(*network_rgb_in)
network_dino_in = [
nn.Conv2d(cin_dino, nf, kernel_size=4, stride=2, padding=1, bias=False), # 128x128 -> 64x64
nn.GroupNorm(16, nf),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, nf*2, kernel_size=4, stride=2, padding=1, bias=False), # 64x64 -> 32x32
nn.GroupNorm(16*2, nf*2),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf*2, nf*4, kernel_size=4, stride=2, padding=1, bias=False), # 32x32 -> 16x16
nn.GroupNorm(16*4, nf*4),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
]
self.network_dino_in = nn.Sequential(*network_dino_in)
network_fusion = [
nn.Conv2d(nf*4*2, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 8x8
# nn.GroupNorm(16*8, nf*8),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
]
add_downsample = int(np.log2(in_size//128))
if add_downsample > 0:
for _ in range(add_downsample):
network_fusion += [
nn.Conv2d(nf*8, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 8x8
# nn.GroupNorm(16*8, nf*8),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
]
network_fusion += [
nn.Conv2d(nf*8, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 8x8 -> 4x4
nn.LeakyReLU(0.2, inplace=True),
]
if zdim is None:
network_fusion += [
nn.Conv2d(nf*8, cout, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
]
else:
network_fusion += [
nn.Conv2d(nf*8, zdim, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(zdim, cout, kernel_size=1, stride=1, padding=0, bias=False),
]
if activation is not None:
network_fusion += [get_activation(activation)]
self.network_fusion = nn.Sequential(*network_fusion)
def forward(self, rgb_image, dino_image):
rgb_feat = self.network_rgb_in(rgb_image)
dino_feat = self.network_dino_in(dino_image)
out = self.network_fusion(torch.cat([rgb_feat, dino_feat], dim=1))
return out.reshape(rgb_image.size(0), -1)
class Encoder32(nn.Module):
def __init__(self, cin, cout, nf=256, activation=None):
super().__init__()
network = [
nn.Conv2d(cin, nf, kernel_size=4, stride=2, padding=1, bias=False), # 32x32 -> 16x16
nn.GroupNorm(nf//4, nf),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, nf, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 8x8
nn.GroupNorm(nf//4, nf),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, nf, kernel_size=4, stride=2, padding=1, bias=False), # 8x8 -> 4x4
nn.GroupNorm(nf//4, nf),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, cout, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
]
if activation is not None:
network += [get_activation(activation)]
self.network = nn.Sequential(*network)
def forward(self, input):
return self.network(input).reshape(input.size(0), -1)
class MLP(nn.Module):
def __init__(self, cin, cout, num_layers, nf=256, dropout=0, activation=None, inner_act='relu', linear_bias=False):
super().__init__()
assert num_layers >= 1
layer_act = get_activation(inner_act)
if num_layers == 1:
network = [nn.Linear(cin, cout, bias=linear_bias)]
else:
# network = [nn.Linear(cin, nf, bias=False)]
# for _ in range(num_layers-2):
# network += [
# nn.ReLU(inplace=True),
# nn.Linear(nf, nf, bias=False)]
# if dropout:
# network += [nn.Dropout(dropout)]
# network += [
# nn.ReLU(inplace=True),
# nn.Linear(nf, cout, bias=False)]
network = [nn.Linear(cin, nf, bias=linear_bias)]
for _ in range(num_layers-2):
network += [
layer_act,
nn.Linear(nf, nf, bias=linear_bias)]
if dropout:
network += [nn.Dropout(dropout)]
network += [
layer_act,
nn.Linear(nf, cout, bias=linear_bias)]
if activation is not None:
network += [get_activation(activation)]
self.network = nn.Sequential(*network)
def forward(self, input):
return self.network(input)
class Embedding(nn.Module):
def __init__(self, cin, cout, zdim=128, nf=64, activation=None):
super().__init__()
network = [
nn.Linear(cin, nf, bias=False),
nn.ReLU(inplace=True),
nn.Linear(nf, zdim, bias=False),
nn.ReLU(inplace=True),
nn.Linear(zdim, cout, bias=False)]
if activation is not None:
network += [get_activation(activation)]
self.network = nn.Sequential(*network)
def forward(self, input):
return self.network(input.reshape(input.size(0), -1)).reshape(input.size(0), -1)
class PerceptualLoss(nn.Module):
def __init__(self, requires_grad=False):
super(PerceptualLoss, self).__init__()
mean_rgb = torch.FloatTensor([0.485, 0.456, 0.406])
std_rgb = torch.FloatTensor([0.229, 0.224, 0.225])
self.register_buffer('mean_rgb', mean_rgb)
self.register_buffer('std_rgb', std_rgb)
vgg_pretrained_features = torchvision.models.vgg16(pretrained=True).features
self.slice1 = nn.Sequential()
self.slice2 = nn.Sequential()
self.slice3 = nn.Sequential()
self.slice4 = nn.Sequential()
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def normalize(self, x):
out = x/2 + 0.5
out = (out - self.mean_rgb.view(1,3,1,1)) / self.std_rgb.view(1,3,1,1)
return out
def __call__(self, im1, im2, mask=None, conf_sigma=None):
im = torch.cat([im1,im2], 0)
im = self.normalize(im) # normalize input
## compute features
feats = []
f = self.slice1(im)
feats += [torch.chunk(f, 2, dim=0)]
f = self.slice2(f)
feats += [torch.chunk(f, 2, dim=0)]
f = self.slice3(f)
feats += [torch.chunk(f, 2, dim=0)]
f = self.slice4(f)
feats += [torch.chunk(f, 2, dim=0)]
losses = []
for f1, f2 in feats[2:3]: # use relu3_3 features only
loss = (f1-f2)**2
if conf_sigma is not None:
loss = loss / (2*conf_sigma**2 +EPS) + (conf_sigma +EPS).log()
if mask is not None:
b, c, h, w = loss.shape
_, _, hm, wm = mask.shape
sh, sw = hm//h, wm//w
mask0 = nn.functional.avg_pool2d(mask, kernel_size=(sh,sw), stride=(sh,sw)).expand_as(loss)
loss = (loss * mask0).sum() / mask0.sum()
else:
loss = loss.mean()
losses += [loss]
return sum(losses)
## from: https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.norm_layer = norm_layer
if norm_layer is not None:
self.bn1 = norm_layer(planes)
self.bn2 = norm_layer(planes)
if inplanes != planes:
self.downsample = nn.Sequential(
conv1x1(inplanes, planes, stride),
norm_layer(planes),
)
else:
self.downsample = None
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
if self.norm_layer is not None:
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
if self.norm_layer is not None:
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResEncoder(nn.Module):
def __init__(self, cin, cout, in_size=128, zdim=None, nf=64, activation=None):
super().__init__()
network = [
nn.Conv2d(cin, nf, kernel_size=4, stride=2, padding=1, bias=False), # 128x128 -> 64x64
# nn.GroupNorm(16, nf),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(nf, nf*2, kernel_size=4, stride=2, padding=1, bias=False), # 64x64 -> 32x32
# nn.GroupNorm(16*2, nf*2),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
BasicBlock(nf*2, nf*2, norm_layer=None),
BasicBlock(nf*2, nf*2, norm_layer=None),
nn.Conv2d(nf*2, nf*4, kernel_size=4, stride=2, padding=1, bias=False), # 32x32 -> 16x16
# nn.GroupNorm(16*4, nf*4),
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
BasicBlock(nf*4, nf*4, norm_layer=None),
BasicBlock(nf*4, nf*4, norm_layer=None),
nn.Conv2d(nf*4, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 16x16 -> 8x8
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
BasicBlock(nf*8, nf*8, norm_layer=None),
BasicBlock(nf*8, nf*8, norm_layer=None),
]
add_downsample = int(np.log2(in_size//64))
if add_downsample > 0:
for _ in range(add_downsample):
network += [
nn.Conv2d(nf*8, nf*8, kernel_size=4, stride=2, padding=1, bias=False), # 8x8 -> 4x4
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
BasicBlock(nf*8, nf*8, norm_layer=None),
BasicBlock(nf*8, nf*8, norm_layer=None),
]
if zdim is None:
network += [
nn.Conv2d(nf*8, cout, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
]
else:
network += [
nn.Conv2d(nf*8, zdim, kernel_size=4, stride=1, padding=0, bias=False), # 4x4 -> 1x1
# nn.ReLU(inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(zdim, cout, kernel_size=1, stride=1, padding=0, bias=False),
]
if activation is not None:
network += [get_activation(activation)]
self.network = nn.Sequential(*network)
def forward(self, input):
return self.network(input).reshape(input.size(0), -1)
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class ViTEncoder(nn.Module):
def __init__(self, cout, which_vit='dino_vits8', pretrained=False, frozen=False, in_size=256, final_layer_type='none', root='/root'):
super().__init__()
if misc.is_main_process():
force_reload = not os.path.exists(os.path.join(root, ".cache/torch/hub/checkpoints/"))
else:
force_reload = False
if "dinov2" in which_vit:
self.ViT = torch.hub.load('facebookresearch/dinov2:main', which_vit, pretrained=pretrained, force_reload=force_reload)
else:
self.ViT = torch.hub.load('facebookresearch/dino:main', which_vit, pretrained=pretrained, force_reload=force_reload)
if frozen:
for p in self.ViT.parameters():
p.requires_grad = False
if which_vit == 'dino_vits8':
self.vit_feat_dim = 384
self.patch_size = 8
elif which_vit == 'dinov2_vits14':
self.vit_feat_dim = 384
self.patch_size = 14
elif which_vit == 'dino_vitb8':
self.vit_feat_dim = 768
self.patch_size = 8
self._feats = []
self.hook_handlers = []
if final_layer_type == 'none':
pass
elif final_layer_type == 'conv':
self.final_layer_patch_out = Encoder32(self.vit_feat_dim, cout, nf=256, activation=None)
self.final_layer_patch_key = Encoder32(self.vit_feat_dim, cout, nf=256, activation=None)
elif final_layer_type == 'attention':
raise NotImplementedError
self.final_layer = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.fc = nn.Linear(self.vit_feat_dim, cout)
else:
raise NotImplementedError
self.final_layer_type = final_layer_type
def _get_hook(self, facet: str):
"""
generate a hook method for a specific block and facet.
"""
if facet in ['attn', 'token']:
def _hook(model, input, output):
self._feats.append(output)
return _hook
if facet == 'query':
facet_idx = 0
elif facet == 'key':
facet_idx = 1
elif facet == 'value':
facet_idx = 2
else:
raise TypeError(f"{facet} is not a supported facet.")
def _inner_hook(module, input, output):
input = input[0]
B, N, C = input.shape
qkv = module.qkv(input).reshape(B, N, 3, module.num_heads, C // module.num_heads).permute(2, 0, 3, 1, 4)
self._feats.append(qkv[facet_idx]) #Bxhxtxd
return _inner_hook
def _register_hooks(self, layers: List[int], facet: str) -> None:
"""
register hook to extract features.
:param layers: layers from which to extract features.
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token' | 'attn']
"""
for block_idx, block in enumerate(self.ViT.blocks):
if block_idx in layers:
if facet == 'token':
self.hook_handlers.append(block.register_forward_hook(self._get_hook(facet)))
elif facet == 'attn':
self.hook_handlers.append(block.attn.attn_drop.register_forward_hook(self._get_hook(facet)))
elif facet in ['key', 'query', 'value']:
self.hook_handlers.append(block.attn.register_forward_hook(self._get_hook(facet)))
else:
raise TypeError(f"{facet} is not a supported facet.")
def _unregister_hooks(self) -> None:
"""
unregisters the hooks. should be called after feature extraction.
"""
for handle in self.hook_handlers:
handle.remove()
self.hook_handlers = []
def forward(self, x, return_patches=False):
b, c, h, w = x.shape
self._feats = []
self._register_hooks([11], 'key')
#self._register_hooks([11], 'token')
x = self.ViT.prepare_tokens(x)
#x = self.ViT.prepare_tokens_with_masks(x)
for blk in self.ViT.blocks:
x = blk(x)
out = self.ViT.norm(x)
self._unregister_hooks()
ph, pw = h // self.patch_size, w // self.patch_size
patch_out = out[:, 1:] # first is class token
patch_out = patch_out.reshape(b, ph, pw, self.vit_feat_dim).permute(0, 3, 1, 2)
patch_key = self._feats[0][:,:,1:] # B, num_heads, num_patches, dim
patch_key = patch_key.permute(0, 1, 3, 2).reshape(b, self.vit_feat_dim, ph, pw)
if self.final_layer_type == 'none':
global_feat_out = out[:, 0].reshape(b, -1) # first is class token
global_feat_key = self._feats[0][:, :, 0].reshape(b, -1) # first is class token
elif self.final_layer_type == 'conv':
global_feat_out = self.final_layer_patch_out(patch_out).view(b, -1)
global_feat_key = self.final_layer_patch_key(patch_key).view(b, -1)
elif self.final_layer_type == 'attention':
raise NotImplementedError
else:
raise NotImplementedError
if not return_patches:
patch_out = patch_key = None
return global_feat_out, global_feat_key, patch_out, patch_key
class ArticulationNetwork(nn.Module):
def __init__(self, net_type, feat_dim, pos_dim, num_layers, nf, n_harmonic_functions=0, omega0=1, activation=None, enable_articulation_idadd=False):
super().__init__()
if n_harmonic_functions > 0:
self.posenc = HarmonicEmbedding(n_harmonic_functions=n_harmonic_functions, omega0=omega0)
pos_dim = pos_dim * (n_harmonic_functions * 2 + 1)
else:
self.posenc = None
pos_dim = 4
cout = 3
if net_type == 'mlp':
self.network = MLP(
feat_dim + pos_dim, # + bone xyz pos and index
cout, # We represent the rotation of each bone by its Euler angles ψ, θ, and φ
num_layers,
nf=nf,
dropout=0,
activation=activation
)
elif net_type == 'attention':
self.in_layer = nn.Sequential(
nn.Linear(feat_dim + pos_dim, nf),
nn.GELU(),
nn.LayerNorm(nf),
)
self.blocks = nn.ModuleList([
Block(
dim=nf, num_heads=8, mlp_ratio=2., qkv_bias=False, qk_scale=None,
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm)
for i in range(num_layers)])
out_layer = [nn.Linear(nf, cout)]
if activation:
out_layer += [get_activation(activation)]
self.out_layer = nn.Sequential(*out_layer)
else:
raise NotImplementedError
self.net_type = net_type
self.enable_articulation_idadd = enable_articulation_idadd
def forward(self, x, pos):
pos_inp = pos
if self.posenc is not None:
pos = torch.cat([pos, self.posenc(pos)], dim=-1)
x = torch.cat([x, pos], dim=-1)
if self.enable_articulation_idadd:
articulation_id = pos_inp[..., -1:]
x = x + articulation_id
if self.net_type == 'mlp':
out = self.network(x)
elif self.net_type == 'attention':
x = self.in_layer(x)
for blk in self.blocks:
x = blk(x)
out = self.out_layer(x)
else:
raise NotImplementedError
return out
## Attention block from ViT (https://github.com/facebookresearch/dino/blob/main/vision_transformer.py)
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
y, attn = self.attn(self.norm1(x))
if return_attention:
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class FeatureAttention(nn.Module):
def __init__(self, vit_type, pos_dim, embedder_freq=0, zdim=128, img_size=256, activation=None):
super().__init__()
self.zdim = zdim
if embedder_freq > 0:
self.posenc = HarmonicEmbedding(n_harmonic_functions=embedder_freq, omega0=1)
pos_dim = pos_dim * (embedder_freq * 2 + 1)
else:
self.posenc = None
self.pos_dim = pos_dim
if vit_type == 'dino_vits8':
self.vit_feat_dim = 384
patch_size = 8
elif which_vit == 'dinov2_vits14':
self.vit_feat_dim = 384
self.patch_size = 14
elif vit_type == 'dino_vitb8':
self.vit_feat_dim = 768
patch_size = 8
else:
raise NotImplementedError
self.num_patches_per_dim = img_size // patch_size
self.kv = nn.Sequential(
nn.Linear(self.vit_feat_dim, zdim),
nn.ReLU(inplace=True),
nn.LayerNorm(zdim),
nn.Linear(zdim, zdim*2),
)
self.q = nn.Sequential(
nn.Linear(pos_dim, zdim),
nn.ReLU(inplace=True),
nn.LayerNorm(zdim),
nn.Linear(zdim, zdim),
)
final_mlp = [
nn.Linear(zdim, zdim),
nn.ReLU(inplace=True),
nn.LayerNorm(zdim),
nn.Linear(zdim, self.vit_feat_dim)
]
if activation is not None:
final_mlp += [get_activation(activation)]
self.final_ln = nn.Sequential(*final_mlp)
def forward(self, x, feat):
_, vit_feat_dim, ph, pw = feat.shape
assert ph == pw and ph == self.num_patches_per_dim and vit_feat_dim == self.vit_feat_dim
if self.posenc is not None:
x = torch.cat([x, self.posenc(x)], dim=-1)
bxf, k, c = x.shape
assert c == self.pos_dim
query = self.q(x)
feat_in = feat.view(bxf, vit_feat_dim, ph*pw).permute(0, 2, 1) # N, K, C
k, v = self.kv(feat_in).chunk(2, dim=-1)
attn = torch.einsum('bnd,bpd->bnp', query, k).softmax(dim=-1)
out = torch.einsum('bnp,bpd->bnd', attn, v)
out = self.final_ln(out)
return out