Spaces:
Sleeping
Sleeping
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
import os | |
import numpy as np | |
import torch | |
import nvdiffrast.torch as dr | |
import imageio | |
import torchvision.transforms.functional as TF | |
import torch.nn.functional as TNF | |
#---------------------------------------------------------------------------- | |
# Vector operations | |
#---------------------------------------------------------------------------- | |
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: | |
return torch.sum(x*y, -1, keepdim=True) | |
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: | |
return 2*dot(x, n)*n - x | |
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: | |
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN | |
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: | |
return x / length(x, eps) | |
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: | |
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) | |
#---------------------------------------------------------------------------- | |
# sRGB color transforms | |
#---------------------------------------------------------------------------- | |
def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: | |
return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055) | |
def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: | |
assert f.shape[-1] == 3 or f.shape[-1] == 4 | |
out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f) | |
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] | |
return out | |
def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: | |
return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4)) | |
def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: | |
assert f.shape[-1] == 3 or f.shape[-1] == 4 | |
out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f) | |
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] | |
return out | |
def reinhard(f: torch.Tensor) -> torch.Tensor: | |
return f/(1+f) | |
#----------------------------------------------------------------------------------- | |
# Metrics (taken from jaxNerf source code, in order to replicate their measurements) | |
# | |
# https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266 | |
# | |
#----------------------------------------------------------------------------------- | |
def mse_to_psnr(mse): | |
"""Compute PSNR given an MSE (we assume the maximum pixel value is 1).""" | |
return -10. / np.log(10.) * np.log(mse) | |
def psnr_to_mse(psnr): | |
"""Compute MSE given a PSNR (we assume the maximum pixel value is 1).""" | |
return np.exp(-0.1 * np.log(10.) * psnr) | |
#---------------------------------------------------------------------------- | |
# Displacement texture lookup | |
#---------------------------------------------------------------------------- | |
def get_miplevels(texture: np.ndarray) -> float: | |
minDim = min(texture.shape[0], texture.shape[1]) | |
return np.floor(np.log2(minDim)) | |
def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: | |
tex_map = tex_map[None, ...] # Add batch dimension | |
tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW | |
tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False) | |
tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC | |
return tex[0, 0, ...] | |
#---------------------------------------------------------------------------- | |
# Cubemap utility functions | |
#---------------------------------------------------------------------------- | |
def cube_to_dir(s, x, y): | |
if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x | |
elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x | |
elif s == 2: rx, ry, rz = x, torch.ones_like(x), y | |
elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y | |
elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x) | |
elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x) | |
return torch.stack((rx, ry, rz), dim=-1) | |
def latlong_to_cubemap(latlong_map, res): | |
cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda') | |
for s in range(6): | |
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), | |
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), | |
indexing='ij') | |
v = safe_normalize(cube_to_dir(s, gx, gy)) | |
tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5 | |
tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi | |
texcoord = torch.cat((tu, tv), dim=-1) | |
cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0] | |
return cubemap | |
def cubemap_to_latlong(cubemap, res): | |
gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), | |
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), | |
indexing='ij') | |
sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi) | |
sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi) | |
reflvec = torch.stack(( | |
sintheta*sinphi, | |
costheta, | |
-sintheta*cosphi | |
), dim=-1) | |
return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0] | |
#---------------------------------------------------------------------------- | |
# Image scaling | |
#---------------------------------------------------------------------------- | |
def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: | |
return scale_img_nhwc(x[None, ...], size, mag, min)[0] | |
def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: | |
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" | |
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW | |
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger | |
y = torch.nn.functional.interpolate(y, size, mode=min) | |
else: # Magnification | |
if mag == 'bilinear' or mag == 'bicubic': | |
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) | |
else: | |
y = torch.nn.functional.interpolate(y, size, mode=mag) | |
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC | |
def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: | |
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW | |
y = torch.nn.functional.avg_pool2d(y, size) | |
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC | |
#---------------------------------------------------------------------------- | |
# Behaves similar to tf.segment_sum | |
#---------------------------------------------------------------------------- | |
def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: | |
num_segments = torch.unique_consecutive(segment_ids).shape[0] | |
# Repeats ids until same dimension as data | |
if len(segment_ids.shape) == 1: | |
s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long() | |
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:]) | |
assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" | |
shape = [num_segments] + list(data.shape[1:]) | |
result = torch.zeros(*shape, dtype=torch.float32, device='cuda') | |
result = result.scatter_add(0, segment_ids, data) | |
return result | |
#---------------------------------------------------------------------------- | |
# Matrix helpers. | |
#---------------------------------------------------------------------------- | |
def fovx_to_fovy(fovx, aspect): | |
return np.arctan(np.tan(fovx / 2) / aspect) * 2.0 | |
def focal_length_to_fovy(focal_length, sensor_height): | |
return 2 * np.arctan(0.5 * sensor_height / focal_length) | |
# Reworked so this matches gluPerspective / glm::perspective, using fovy | |
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None): | |
y = np.tan(fovy / 2) | |
return torch.tensor([[1/(y*aspect), 0, 0, 0], | |
[ 0, 1/-y, 0, 0], | |
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], | |
[ 0, 0, -1, 0]], dtype=torch.float32, device=device) | |
# Reworked so this matches gluPerspective / glm::perspective, using fovy | |
def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None): | |
y = np.tan(fovy / 2) | |
# Full frustum | |
R, L = aspect*y, -aspect*y | |
T, B = y, -y | |
# Create a randomized sub-frustum | |
width = (R-L)*fraction | |
height = (T-B)*fraction | |
xstart = (R-L)*rx | |
ystart = (T-B)*ry | |
l = L + xstart | |
r = l + width | |
b = B + ystart | |
t = b + height | |
# https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix | |
return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0], | |
[ 0, -2/(t-b), (t+b)/(t-b), 0], | |
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], | |
[ 0, 0, -1, 0]], dtype=torch.float32, device=device) | |
def translate(x, y, z, device=None): | |
return torch.tensor([[1, 0, 0, x], | |
[0, 1, 0, y], | |
[0, 0, 1, z], | |
[0, 0, 0, 1]], dtype=torch.float32, device=device) | |
def rotate_x(a, device=None): | |
s, c = np.sin(a), np.cos(a) | |
return torch.tensor([[1, 0, 0, 0], | |
[0, c, s, 0], | |
[0, -s, c, 0], | |
[0, 0, 0, 1]], dtype=torch.float32, device=device) | |
def rotate_y(a, device=None): | |
s, c = np.sin(a), np.cos(a) | |
return torch.tensor([[ c, 0, s, 0], | |
[ 0, 1, 0, 0], | |
[-s, 0, c, 0], | |
[ 0, 0, 0, 1]], dtype=torch.float32, device=device) | |
def scale(s, device=None): | |
return torch.tensor([[ s, 0, 0, 0], | |
[ 0, s, 0, 0], | |
[ 0, 0, s, 0], | |
[ 0, 0, 0, 1]], dtype=torch.float32, device=device) | |
def lookAt(eye, at, up): | |
a = eye - at | |
w = a / torch.linalg.norm(a) | |
u = torch.cross(up, w) | |
u = u / torch.linalg.norm(u) | |
v = torch.cross(w, u) | |
translate = torch.tensor([[1, 0, 0, -eye[0]], | |
[0, 1, 0, -eye[1]], | |
[0, 0, 1, -eye[2]], | |
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) | |
rotate = torch.tensor([[u[0], u[1], u[2], 0], | |
[v[0], v[1], v[2], 0], | |
[w[0], w[1], w[2], 0], | |
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) | |
return rotate @ translate | |
def random_rotation_translation(t, device=None): | |
m = np.random.normal(size=[3, 3]) | |
m[1] = np.cross(m[0], m[2]) | |
m[2] = np.cross(m[0], m[1]) | |
m = m / np.linalg.norm(m, axis=1, keepdims=True) | |
m = np.pad(m, [[0, 1], [0, 1]], mode='constant') | |
m[3, 3] = 1.0 | |
m[:3, 3] = np.random.uniform(-t, t, size=[3]) | |
return torch.tensor(m, dtype=torch.float32, device=device) | |
def random_rotation(device=None): | |
m = np.random.normal(size=[3, 3]) | |
m[1] = np.cross(m[0], m[2]) | |
m[2] = np.cross(m[0], m[1]) | |
m = m / np.linalg.norm(m, axis=1, keepdims=True) | |
m = np.pad(m, [[0, 1], [0, 1]], mode='constant') | |
m[3, 3] = 1.0 | |
m[:3, 3] = np.array([0,0,0]).astype(np.float32) | |
return torch.tensor(m, dtype=torch.float32, device=device) | |
#---------------------------------------------------------------------------- | |
# Compute focal points of a set of lines using least squares. | |
# handy for poorly centered datasets | |
#---------------------------------------------------------------------------- | |
def lines_focal(o, d): | |
d = safe_normalize(d) | |
I = torch.eye(3, dtype=o.dtype, device=o.device) | |
S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0) | |
C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1) | |
return torch.linalg.pinv(S) @ C | |
#---------------------------------------------------------------------------- | |
# Cosine sample around a vector N | |
#---------------------------------------------------------------------------- | |
def cosine_sample(N, size=None): | |
# construct local frame | |
N = N/torch.linalg.norm(N) | |
dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device) | |
dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device) | |
dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1) | |
#dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1 | |
dx = dx / torch.linalg.norm(dx) | |
dy = torch.cross(N,dx) | |
dy = dy / torch.linalg.norm(dy) | |
# cosine sampling in local frame | |
if size is None: | |
phi = 2.0 * np.pi * np.random.uniform() | |
s = np.random.uniform() | |
else: | |
phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device) | |
s = torch.rand(*size, 1, dtype=N.dtype, device=N.device) | |
costheta = np.sqrt(s) | |
sintheta = np.sqrt(1.0 - s) | |
# cartesian vector in local space | |
x = np.cos(phi)*sintheta | |
y = np.sin(phi)*sintheta | |
z = costheta | |
# local to world | |
return dx*x + dy*y + N*z | |
#---------------------------------------------------------------------------- | |
# Bilinear downsample by 2x. | |
#---------------------------------------------------------------------------- | |
def bilinear_downsample(x : torch.tensor) -> torch.Tensor: | |
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 | |
w = w.expand(x.shape[-1], 1, 4, 4) | |
x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1]) | |
return x.permute(0, 2, 3, 1) | |
#---------------------------------------------------------------------------- | |
# Bilinear downsample log(spp) steps | |
#---------------------------------------------------------------------------- | |
def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: | |
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 | |
g = x.shape[-1] | |
w = w.expand(g, 1, 4, 4) | |
x = x.permute(0, 3, 1, 2) # NHWC -> NCHW | |
steps = int(np.log2(spp)) | |
for _ in range(steps): | |
xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate') | |
x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g) | |
return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC | |
#---------------------------------------------------------------------------- | |
# Singleton initialize GLFW | |
#---------------------------------------------------------------------------- | |
_glfw_initialized = False | |
def init_glfw(): | |
global _glfw_initialized | |
try: | |
import glfw | |
glfw.ERROR_REPORTING = 'raise' | |
glfw.default_window_hints() | |
glfw.window_hint(glfw.VISIBLE, glfw.FALSE) | |
test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet | |
except glfw.GLFWError as e: | |
if e.error_code == glfw.NOT_INITIALIZED: | |
glfw.init() | |
_glfw_initialized = True | |
#---------------------------------------------------------------------------- | |
# Image display function using OpenGL. | |
#---------------------------------------------------------------------------- | |
_glfw_window = None | |
def display_image(image, title=None): | |
# Import OpenGL | |
import OpenGL.GL as gl | |
import glfw | |
# Zoom image if requested. | |
image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image) | |
height, width, channels = image.shape | |
# Initialize window. | |
init_glfw() | |
if title is None: | |
title = 'Debug window' | |
global _glfw_window | |
if _glfw_window is None: | |
glfw.default_window_hints() | |
_glfw_window = glfw.create_window(width, height, title, None, None) | |
glfw.make_context_current(_glfw_window) | |
glfw.show_window(_glfw_window) | |
glfw.swap_interval(0) | |
else: | |
glfw.make_context_current(_glfw_window) | |
glfw.set_window_title(_glfw_window, title) | |
glfw.set_window_size(_glfw_window, width, height) | |
# Update window. | |
glfw.poll_events() | |
gl.glClearColor(0, 0, 0, 1) | |
gl.glClear(gl.GL_COLOR_BUFFER_BIT) | |
gl.glWindowPos2f(0, 0) | |
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) | |
gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels] | |
gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name] | |
gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1]) | |
glfw.swap_buffers(_glfw_window) | |
if glfw.window_should_close(_glfw_window): | |
return False | |
return True | |
#---------------------------------------------------------------------------- | |
# Image save/load helper. | |
#---------------------------------------------------------------------------- | |
def save_image(fn, x : np.ndarray): | |
try: | |
if os.path.splitext(fn)[1] == ".png": | |
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving | |
else: | |
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8)) | |
except: | |
print("WARNING: FAILED to save image %s" % fn) | |
def save_image_raw(fn, x : np.ndarray): | |
try: | |
imageio.imwrite(fn, x) | |
except: | |
print("WARNING: FAILED to save image %s" % fn) | |
def load_image_raw(fn) -> np.ndarray: | |
return imageio.imread(fn) | |
def load_image(fn) -> np.ndarray: | |
img = load_image_raw(fn) | |
if img.dtype == np.float32: # HDR image | |
return img | |
else: # LDR image | |
return img.astype(np.float32) / 255 | |
#---------------------------------------------------------------------------- | |
def time_to_text(x): | |
if x > 3600: | |
return "%.2f h" % (x / 3600) | |
elif x > 60: | |
return "%.2f m" % (x / 60) | |
else: | |
return "%.2f s" % x | |
#---------------------------------------------------------------------------- | |
def checkerboard(res, checker_size) -> np.ndarray: | |
tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2) | |
tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2) | |
check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33 | |
check = check[:res[0], :res[1]] | |
return np.stack((check, check, check), axis=-1) | |
def blur_image(image, kernel_size=3, sigma=None, mode='gaussian'): | |
if mode == 'gaussian': | |
return TF.gaussian_blur(image, kernel_size, sigma) | |
elif mode == 'average': | |
p = kernel_size // 2 | |
out = TNF.pad(image, (p, p, p, p), mode='replicate') | |
return TNF.avg_pool2d(out, kernel_size, stride=1, padding=0) | |
else: | |
raise Exception("Unknown blur mode") |