3DFauna_demo / video3d /trainer_ddp.py
kyleleey
first commit
98a77e0
raw
history blame
28.5 kB
import os
import os.path as osp
import glob
from datetime import datetime
import random
import torch
import video3d.utils.meters as meters
import video3d.utils.misc as misc
from video3d.dataloaders_ddp import get_sequence_loader_quadrupeds
def sample_frames(batch, num_sample_frames, iteration, stride=1):
## window slicing sampling
images, masks, flows, bboxs, bg_image, seq_idx, frame_idx = batch
num_seqs, total_num_frames = images.shape[:2]
# start_frame_idx = iteration % (total_num_frames - num_sample_frames +1)
## forward and backward
num_windows = total_num_frames - num_sample_frames +1
start_frame_idx = (iteration * stride) % (2*num_windows)
## x' = (2n-1)/2 - |(2n-1)/2 - x| : 0,1,2,3,4,5 -> 0,1,2,2,1,0
mid_val = (2*num_windows -1) /2
start_frame_idx = int(mid_val - abs(mid_val -start_frame_idx))
new_batch = images[:, start_frame_idx:start_frame_idx+num_sample_frames], \
masks[:, start_frame_idx:start_frame_idx+num_sample_frames], \
flows[:, start_frame_idx:start_frame_idx+num_sample_frames-1], \
bboxs[:, start_frame_idx:start_frame_idx+num_sample_frames], \
bg_image, \
seq_idx, \
frame_idx[:, start_frame_idx:start_frame_idx+num_sample_frames]
return new_batch
def indefinite_generator(loader):
while True:
for x in loader:
yield x
def indefinite_generator_from_list(loaders):
while True:
random_idx = random.randint(0, len(loaders)-1)
for x in loaders[random_idx]:
yield x
break
def definite_generator(loader):
for x in loader:
yield x
while True:
yield None
class TrainerDDP:
def __init__(self, cfgs, model):
self.cfgs = cfgs
self.is_dry_run = cfgs.get('is_dry_run', False)
self.rank = cfgs.get('rank', 0)
self.world_size = cfgs.get('world_size', 1)
self.use_ddp = cfgs.get('use_ddp', True)
self.device = cfgs.get('device', 'cpu')
self.num_epochs = cfgs.get('num_epochs', 1)
# The logic is, if the num_iterations is set in the cfg
# for any 'epoch' in cfg, I rescale it to (epoch / 120) * epoch_now, as in horse exp
# for any 'iter' in cfg, I just keep them the same
self.num_iterations = cfgs.get('num_iterations', 0)
if self.num_iterations != 0:
self.use_total_iterations = True
else:
self.use_total_iterations = False
self.num_sample_frames = cfgs.get('num_sample_frames', 100)
self.sample_frame_stride = cfgs.get('sample_frame_stride', 1)
self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
self.save_checkpoint_freq = cfgs.get('save_checkpoint_freq', 1)
self.keep_num_checkpoint = cfgs.get('keep_num_checkpoint', 2) # -1 for keeping all checkpoints
self.resume = cfgs.get('resume', True)
self.reset_epoch = cfgs.get('reset_epoch', False)
self.finetune_ckpt = cfgs.get('finetune_ckpt', None)
# print('!!!!!!!!!!!!!!!!!!!!!!!!!!')
print(f'reset epoch: {self.reset_epoch}')
# print('!!!!!!!!!!!!!!!!!!!!!!!!!!')
self.use_logger = cfgs.get('use_logger', True)
self.log_freq_images = cfgs.get('log_freq_images', 1000)
self.log_train_images = cfgs.get('log_train_images', False)
self.log_freq_losses = cfgs.get('log_freq_losses', 100)
self.visualize_validation = cfgs.get('visualize_validation', False)
self.fix_viz_batch = cfgs.get('fix_viz_batch', False)
self.archive_code = cfgs.get('archive_code', True)
self.checkpoint_name = cfgs.get('checkpoint_name', None)
self.test_result_dir = cfgs.get('test_result_dir', None)
self.validate = cfgs.get('validate', False)
self.current_epoch = 0
self.logger = None
self.viz_input = None
self.dataset = cfgs.get('dataset', 'video')
self.train_with_cub = cfgs.get('train_with_cub', False)
self.train_with_kaggle = cfgs.get('train_with_kaggle', False)
self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
self.metrics_trace = meters.MetricsTrace()
self.make_metrics = lambda m=None: meters.StandardMetrics(m)
self.batch_size = cfgs.get('batch_size', 64)
self.in_image_size = cfgs.get('in_image_size', 256)
self.out_image_size = cfgs.get('out_image_size', 256)
self.num_workers = cfgs.get('num_workers', 4)
self.run_train = cfgs.get('run_train', False)
self.train_data_dir = cfgs.get('train_data_dir', None)
self.val_data_dir = cfgs.get('val_data_dir', None)
self.run_test = cfgs.get('run_test', False)
self.test_data_dir = cfgs.get('test_data_dir', None)
self.flow_bool = cfgs.get('flow_bool', 0)
if len(self.train_data_dir) <= 10 and len(self.val_data_dir) <= 10:
self.train_loader, self.val_loader, self.test_loader = model.get_data_loaders_ddp(cfgs, self.dataset, self.rank, self.world_size, in_image_size=self.in_image_size, out_image_size=self.out_image_size, batch_size=self.batch_size, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.train_data_dir, val_data_dir=self.val_data_dir, test_data_dir=self.test_data_dir, flow_bool=self.flow_bool)
else:
# for 128 categories specific training
self.train_loader, self.val_loader, self.test_loader = self.get_efficient_data_loaders_ddp(
cfgs,
self.batch_size,
self.num_workers,
self.in_image_size,
self.out_image_size
)
print(self.train_loader, self.val_loader, self.test_loader)
if self.train_with_cub:
self.batch_size_cub = cfgs.get('batch_size_cub', 64)
self.data_dir_cub = cfgs.get('data_dir_cub', None)
self.train_loader_cub, self.val_loader_cub, self.test_loader_cub = model.get_data_loaders_ddp(cfgs, 'cub', self.rank, self.world_size, in_image_size=self.in_image_size, batch_size=self.batch_size_cub, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_cub, val_data_dir=self.data_dir_cub, test_data_dir=self.data_dir_cub)
if self.train_with_kaggle:
self.batch_size_kaggle = cfgs.get('batch_size_kaggle', 64)
self.data_dir_kaggle = cfgs.get('data_dir_kaggle', None)
self.train_loader_kaggle, self.val_loader_kaggle, self.test_loader_kaggle = model.get_data_loaders_ddp(cfgs, 'kaggle', self.rank, self.world_size, in_image_size=self.in_image_size, batch_size=self.batch_size_kaggle, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_kaggle, val_data_dir=self.data_dir_kaggle, test_data_dir=self.data_dir_kaggle)
if self.use_total_iterations:
# reset the epoch related cfgs
dataloader_length = max([len(loader) for loader in self.train_loader]) * len(self.train_loader)
print("Total length of data loader is: ", dataloader_length)
total_epoch = int(self.num_iterations / dataloader_length) + 1
print(f'run for {total_epoch} epochs')
print('is_main_process()?', misc.is_main_process())
for k, v in cfgs.items():
if 'epoch' in k:
if isinstance(v, list):
new_v = [int(total_epoch * x / 120) + 1 for x in v]
cfgs[k] = new_v
elif isinstance(v, int):
new_v = int(total_epoch * v / 120) + 1
cfgs[k] = new_v
else:
continue
self.num_epochs = total_epoch
self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
self.cfgs = cfgs
self.model = model(cfgs)
self.model.trainer = self
self.save_result_freq = cfgs.get('save_result_freq', None)
self.train_result_dir = osp.join(self.checkpoint_dir, 'results')
self.use_wandb = cfgs.get('use_wandb', False)
def get_efficient_data_loaders_ddp(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
train_loader = val_loader = test_loader = None
color_jitter_train = cfgs.get('color_jitter_train', None)
color_jitter_val = cfgs.get('color_jitter_val', None)
random_flip_train = cfgs.get('random_flip_train', False)
data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
skip_beginning = cfgs.get('skip_beginning', 4)
skip_end = cfgs.get('skip_end', 4)
num_sample_frames = cfgs.get('num_sample_frames', 2)
min_seq_len = cfgs.get('min_seq_len', 10)
max_seq_len = cfgs.get('max_seq_len', 10)
debug_seq = cfgs.get('debug_seq', False)
random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
load_background = cfgs.get('background_mode', 'none') == 'background'
rgb_suffix = cfgs.get('rgb_suffix', '.png')
load_dino_feature = cfgs.get('load_dino_feature', False)
load_dino_cluster = cfgs.get('load_dino_cluster', False)
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
enhance_back_view = cfgs.get('enhance_back_view', False)
enhance_back_view_path = cfgs.get('enhance_back_view_path', None)
override_categories = None
get_loader_ddp = lambda **kwargs: get_sequence_loader_quadrupeds(
mode=data_loader_mode,
num_workers=num_workers,
in_image_size=in_image_size,
out_image_size=out_image_size,
debug_seq=debug_seq,
skip_beginning=skip_beginning,
skip_end=skip_end,
num_sample_frames=num_sample_frames,
min_seq_len=min_seq_len,
max_seq_len=max_seq_len,
load_background=load_background,
rgb_suffix=rgb_suffix,
load_dino_feature=load_dino_feature,
load_dino_cluster=load_dino_cluster,
dino_feature_dim=dino_feature_dim,
flow_bool=0,
enhance_back_view=enhance_back_view,
enhance_back_view_path=enhance_back_view_path,
override_categories=override_categories,
**kwargs)
# just the train now
print(f"Loading training data...")
val_image_num = cfgs.get('few_shot_val_image_num', 5)
# the train_data_dir is a dict and will go into the original dataset type
#TODO: very hack here, directly assign first 7 as original categories
o_class = ["horse", "elephant", "zebra", "cow", "giraffe", "sheep", "bear"]
self.original_categories_paths = {}
self.few_shot_categories_paths = {}
self.original_val_data_path = {}
for k,v in self.train_data_dir.items():
if k in o_class:
self.original_categories_paths.update({k: v})
self.original_val_data_path.update({k: self.val_data_dir[k]})
else:
self.few_shot_categories_paths.update({k:v})
self.new_classes_num = len(self.few_shot_categories_paths)
self.original_classes_num = len(self.original_categories_paths)
train_loader = get_loader_ddp(
original_data_dirs=self.original_categories_paths,
few_shot_data_dirs=self.few_shot_categories_paths,
original_num=self.original_classes_num,
few_shot_num=self.new_classes_num,
rank=self.rank,
world_size=self.world_size,
batch_size=batch_size,
is_validation=False,
val_image_num=val_image_num,
shuffle=shuffle_train_seqs,
dense_sample=True,
color_jitter=color_jitter_train,
random_flip=random_flip_train
)
val_loader = get_loader_ddp(
original_data_dirs=self.original_val_data_path,
few_shot_data_dirs=self.few_shot_categories_paths,
original_num=self.original_classes_num,
few_shot_num=self.new_classes_num,
rank=self.rank,
world_size=self.world_size,
batch_size=1,
is_validation=True,
val_image_num=val_image_num,
shuffle=False,
dense_sample=True,
color_jitter=color_jitter_val,
random_flip=False
)
test_loader = None
return train_loader, val_loader, test_loader
def load_checkpoint(self, optim=True, ckpt_path=None):
"""Search the specified/latest checkpoint in checkpoint_dir and load the model and optimizer."""
if ckpt_path is not None:
checkpoint_path = ckpt_path
self.checkpoint_name = osp.basename(checkpoint_path)
elif self.checkpoint_name is not None:
checkpoint_path = osp.join(self.checkpoint_dir, self.checkpoint_name)
else:
checkpoints = sorted(glob.glob(osp.join(self.checkpoint_dir, '*.pth')))
if len(checkpoints) == 0:
return 0, 0
checkpoint_path = checkpoints[-1]
self.checkpoint_name = osp.basename(checkpoint_path)
print(f"Loading checkpoint from {checkpoint_path}")
cp = torch.load(checkpoint_path, map_location=self.device)
# print(cp)
self.model.load_model_state(cp)
if optim:
self.model.load_optimizer_state(cp)
self.metrics_trace = cp['metrics_trace']
epoch = cp['epoch']
total_iter = cp['total_iter']
if 'classes_vectors' in cp:
self.model.classes_vectors = cp['classes_vectors']
return epoch, total_iter
def save_checkpoint(self, epoch, total_iter=0, optim=True):
"""Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
misc.xmkdir(self.checkpoint_dir)
checkpoint_path = osp.join(self.checkpoint_dir, f'checkpoint{epoch:03}.pth')
state_dict = self.model.get_model_state()
if optim:
optimizer_state = self.model.get_optimizer_state()
state_dict = {**state_dict, **optimizer_state}
state_dict['metrics_trace'] = self.metrics_trace
state_dict['epoch'] = epoch
state_dict['total_iter'] = total_iter
print(f"Saving checkpoint to {checkpoint_path}")
torch.save(state_dict, checkpoint_path)
if self.keep_num_checkpoint > 0:
misc.clean_checkpoint(self.checkpoint_dir, keep_num=self.keep_num_checkpoint)
def save_last_checkpoint(self, epoch, total_iter=0, optim=True):
"""Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
misc.xmkdir(self.checkpoint_dir)
checkpoint_path = osp.join(self.checkpoint_dir, 'last.pth')
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
state_dict = self.model.get_model_state()
if optim:
optimizer_state = self.model.get_optimizer_state()
state_dict = {**state_dict, **optimizer_state}
state_dict['metrics_trace'] = self.metrics_trace
state_dict['epoch'] = epoch
state_dict['total_iter'] = total_iter
print(f"Saving checkpoint to {checkpoint_path}")
torch.save(state_dict, checkpoint_path)
def save_clean_checkpoint(self, path):
"""Save model state only to specified path."""
torch.save(self.model.get_model_state(), path)
def test(self):
"""Perform testing."""
self.model.to(self.device)
epoch, self.total_iter = self.load_checkpoint(optim=False)
if self.use_ddp:
self.model.ddp(self.rank, self.world_size)
self.model.set_eval()
if self.test_result_dir is None:
self.test_result_dir = osp.join(self.checkpoint_dir, f'test_results_{self.checkpoint_name}'.replace('.pth', ''))
print(f"Saving testing results to {self.test_result_dir}")
with torch.no_grad():
for iteration, batch in enumerate(self.test_loader):
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.test_result_dir, which_data=self.dataset, is_training=False)
print(f"T{epoch:04}/{iteration:05}")
score_path = osp.join(self.test_result_dir, 'all_metrics.txt')
# self.model.save_scores(score_path)
def train(self):
"""Perform training."""
# archive code and configs
if self.archive_code:
misc.archive_code(osp.join(self.checkpoint_dir, 'archived_code.zip'), filetypes=['.py'])
misc.dump_yaml(osp.join(self.checkpoint_dir, 'configs.yml'), self.cfgs)
# initialize
start_epoch = 0
self.total_iter = 0
self.metrics_trace.reset()
self.model.to(self.device)
self.model.reset_optimizers()
# resume from checkpoint
# from IPython import embed; embed()
if self.resume:
start_epoch, self.total_iter = self.load_checkpoint(optim=True)
if self.reset_epoch:
start_epoch = 0
self.total_iter = 0
if start_epoch == 0 and self.total_iter ==0 and self.finetune_ckpt is not None:
_, _ = self.load_checkpoint(optim=True, ckpt_path=self.finetune_ckpt)
# distribute model
if self.use_ddp:
self.model.ddp(self.rank, self.world_size)
# train with cub
if self.train_with_cub:
self.cub_train_data_iterator = indefinite_generator(self.train_loader_cub)
# initialize tensorboard logger
if misc.is_main_process() and self.use_logger:
if self.use_wandb:
import wandb
wandb.tensorboard.patch(root_logdir=osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")))
wandb.init(name=self.checkpoint_dir.split("/")[-1], project="APT36K")
from torch.utils.tensorboard import SummaryWriter
self.logger = SummaryWriter(osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")), flush_secs=10)
self.viz_data_iterator = indefinite_generator_from_list(self.val_loader) if self.visualize_validation else indefinite_generator_from_list(self.train_loader)
# self.viz_data_iterator = iter(self.viz_data_iterator)
if self.fix_viz_batch:
self.viz_batch = next(self.viz_data_iterator)
# train with cub
if self.train_with_cub:
self.cub_viz_data_iterator = indefinite_generator(self.val_loader_cub) if self.visualize_validation else indefinite_generator(self.train_loader_cub)
if self.fix_viz_batch:
self.viz_batch_cub = next(self.cub_viz_data_iterator)
# run epochs
epoch = 0
for epoch in range(start_epoch, self.num_epochs):
torch.distributed.barrier()
metrics = self.run_epoch(epoch)
if self.rank == 0:
self.metrics_trace.append("train", metrics)
if (epoch+1) % self.save_checkpoint_freq == 0:
self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True)
if self.cfgs.get('pyplot_metrics', True):
self.metrics_trace.plot(pdf_path=osp.join(self.checkpoint_dir, 'metrics.pdf'))
self.metrics_trace.save(osp.join(self.checkpoint_dir, 'metrics.json'))
if self.rank == 0:
print(f"Training completed for all {epoch+1} epochs.")
def dry_run(self):
print(f'rank: {self.rank}, dry_run!!!!!')
self.dry_run_iters = self.cfgs.get('dr_iters', 2)
self.resume = self.cfgs.get('dr_resume', True)
self.use_logger = self.cfgs.get('dr_use_logger', True)
self.log_freq_losses = self.cfgs.get('dr_log_freq_losses', 1)
self.save_result_freq = self.cfgs.get('dr_save_result_freq', 1)
self.log_freq_images = self.cfgs.get('dr_log_freq_images', 1)
self.log_train_images = self.cfgs.get('dr_log_train_images', True)
self.visualize_validation = self.cfgs.get('dr_visualize_validation', True)
self.num_epochs = self.cfgs.get('dr_num_epochs', 1)
self.train()
def run_epoch(self, epoch):
metrics = self.make_metrics()
self.model.set_train()
max_loader_len = max([len(loader) for loader in self.train_loader])
train_generators = [indefinite_generator(loader) for loader in self.train_loader]
iteration = 0
while iteration < max_loader_len * len(self.train_loader):
for generator in train_generators:
batch = next(generator)
self.total_iter += 1
if self.total_iter % 4000 == 0:
self.save_last_checkpoint(epoch+1, self.total_iter, optim=True)
num_seqs, num_frames = batch[0].shape[:2]
total_im_num = num_seqs * num_frames
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data=self.dataset, is_training=True)
if self.train_with_cub and epoch >= self.cub_start_epoch:
batch_cub = next(self.cub_train_data_iterator)
num_seqs, num_frames = batch_cub[0].shape[:2]
total_im_num += num_seqs * num_frames
m_cub = self.model.forward(batch_cub, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data='cub', is_training=True)
m.update({'cub_'+k: v for k,v in m_cub.items()})
m['total_loss'] = self.model.total_loss
self.model.backward()
if self.model.enable_disc and (self.model.mask_discriminator_iter[0] < self.total_iter) and (self.model.mask_discriminator_iter[1] > self.total_iter):
# the discriminator training
discriminator_loss_dict, grad_loss = self.model.discriminator_step()
m.update(
{
'mask_disc_loss_discriminator': discriminator_loss_dict['discriminator_loss'] - grad_loss,
'mask_disc_loss_discriminator_grad': grad_loss,
'mask_disc_loss_discriminator_rv': discriminator_loss_dict['discriminator_loss_rv'],
'mask_disc_loss_discriminator_iv': discriminator_loss_dict['discriminator_loss_iv'],
'mask_disc_loss_discriminator_gt': discriminator_loss_dict['discriminator_loss_gt']
}
)
self.logger.add_histogram('train_'+'discriminator_logits/random_view', discriminator_loss_dict['d_rv'], self.total_iter)
if discriminator_loss_dict['d_iv'] is not None:
self.logger.add_histogram('train_'+'discriminator_logits/input_view', discriminator_loss_dict['d_iv'], self.total_iter)
if discriminator_loss_dict['d_gt'] is not None:
self.logger.add_histogram('train_'+'discriminator_logits/gt_view', discriminator_loss_dict['d_gt'], self.total_iter)
metrics.update(m, total_im_num)
if self.rank == 0:
print(f"T{epoch:04}/{iteration:05}/{metrics}")
## reset optimizers
if self.cfgs.get('opt_reset_every_iter', 0) > 0 and self.total_iter < self.cfgs.get('opt_reset_end_iter', 0):
if self.total_iter % self.cfgs.get('opt_reset_every_iter', 0) == 0:
self.model.reset_optimizers()
if misc.is_main_process() and self.use_logger:
if self.rank == 0 and self.total_iter % self.log_freq_losses == 0:
for name, loss in m.items():
label = f'cub_loss_train/{name[4:]}' if 'cub' in name else f'loss_train/{name}'
self.logger.add_scalar(label, loss, self.total_iter)
if self.rank == 0 and self.save_result_freq is not None and self.total_iter % self.save_result_freq == 0:
with torch.no_grad():
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.train_result_dir, which_data=self.dataset, is_training=False)
torch.cuda.empty_cache()
if self.total_iter % self.log_freq_images == 0:
with torch.no_grad():
if self.rank == 0 and self.log_train_images:
m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='train_', is_training=False)
if self.fix_viz_batch:
print(f'fix_viz_batch:{self.fix_viz_batch}')
batch = self.viz_batch
else:
batch = next(self.viz_data_iterator)
if self.visualize_validation:
import time
vis_start = time.time()
batch = next(self.viz_data_iterator)
# try:
# batch = next(self.viz_data_iterator)
# except: # iterator exhausted
# self.reset_viz_data_iterator()
# batch = next(self.viz_data_iterator)
m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='val_', is_training=False)
vis_end = time.time()
print(f"vis time: {vis_end - vis_start}")
for name, loss in m.items():
if self.rank == 0:
self.logger.add_scalar(f'loss_val/{name}', loss, self.total_iter)
if self.train_with_cub and epoch >= self.cub_start_epoch:
if self.rank == 0 and self.log_train_images:
m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_train_', is_training=True)
if self.fix_viz_batch:
batch_cub = self.viz_batch_cub
elif self.visualize_validation:
batch_cub = next(self.cub_viz_data_iterator)
# try:
# batch = next(self.viz_data_iterator)
# except: # iterator exhausted
# self.reset_viz_data_iterator()
# batch = next(self.viz_data_iterator)
if self.rank == 0:
m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_val_', is_training=False)
for name, loss in m.items():
self.logger.add_scalar(f'cub_loss_val/{name}', loss, self.total_iter)
torch.cuda.empty_cache()
if self.is_dry_run and iteration >= self.dry_run_iters:
break
iteration += 1
self.model.scheduler_step()
return metrics