Spaces:
Sleeping
Sleeping
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization | |
# MIT License | |
# | |
# Copyright (c) 2018 Tom Runia | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to conditions. | |
# | |
# Author: Tom Runia | |
# Date Created: 2018-08-03 | |
import numpy as np | |
import torch | |
def make_colorwheel(): | |
""" | |
Generates a color wheel for optical flow visualization as presented in: | |
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | |
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | |
Code follows the original C++ source code of Daniel Scharstein. | |
Code follows the the Matlab source code of Deqing Sun. | |
Returns: | |
np.ndarray: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros((ncols, 3)) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.floor(255*np.arange(0, RY)/RY) | |
col = col+RY | |
# YG | |
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0, YG)/YG) | |
colorwheel[col:col+YG, 1] = 255 | |
col = col+YG | |
# GC | |
colorwheel[col:col+GC, 1] = 255 | |
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0, GC)/GC) | |
col = col+GC | |
# CB | |
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) | |
colorwheel[col:col+CB, 2] = 255 | |
col = col+CB | |
# BM | |
colorwheel[col:col+BM, 2] = 255 | |
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0, BM)/BM) | |
col = col+BM | |
# MR | |
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) | |
colorwheel[col:col+MR, 0] = 255 | |
return colorwheel | |
def flow_uv_to_colors(u, v, convert_to_bgr=False): | |
""" | |
Applies the flow color wheel to (possibly clipped) flow components u and v. | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
Args: | |
u (np.ndarray): Input horizontal flow of shape [H,W] | |
v (np.ndarray): Input vertical flow of shape [H,W] | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
colorwheel = make_colorwheel() # shape [55x3] | |
ncols = colorwheel.shape[0] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
a = np.arctan2(-v, -u)/np.pi | |
fk = (a+1) / 2*(ncols-1) | |
k0 = np.floor(fk).astype(np.int32) | |
k1 = k0 + 1 | |
k1[k1 == ncols] = 0 | |
f = fk - k0 | |
for i in range(colorwheel.shape[1]): | |
tmp = colorwheel[:, i] | |
col0 = tmp[k0] / 255.0 | |
col1 = tmp[k1] / 255.0 | |
col = (1-f)*col0 + f*col1 | |
idx = (rad <= 1) | |
col[idx] = 1 - rad[idx] * (1-col[idx]) | |
col[~idx] = col[~idx] * 0.75 # out of range | |
# Note the 2-i => BGR instead of RGB | |
ch_idx = 2-i if convert_to_bgr else i | |
flow_image[:, :, ch_idx] = np.floor(255 * col) | |
return flow_image | |
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False, normalize=True): | |
""" | |
Expects a two dimensional flow image of shape. | |
Args: | |
flow_uv (np.ndarray): Flow UV image of shape [H,W,2] | |
clip_flow (float, optional): Clip maximum of flow values. Defaults to None. | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
assert flow_uv.ndim == 3, 'input flow must have three dimensions' | |
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' | |
if clip_flow is not None: | |
flow_uv = np.clip(flow_uv, 0, clip_flow) | |
u = flow_uv[:, :, 0] | |
v = flow_uv[:, :, 1] | |
if normalize: | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
rad_max = np.max(rad) | |
else: | |
rad_max = np.sqrt(flow_uv.shape[0] ** 2 + flow_uv.shape[0] ** 2) | |
epsilon = 1e-5 | |
u = u / (rad_max + epsilon) | |
v = v / (rad_max + epsilon) | |
return flow_uv_to_colors(u, v, convert_to_bgr) | |
def flow_batch_to_images(flow_uv, clip_flow=None, convert_to_bgr=False, normalize=True): | |
flows = [flow_to_image(f.detach().cpu().numpy(), clip_flow, convert_to_bgr, normalize) for f in flow_uv.permute(0, 2, 3, 1)] | |
flows = torch.cat([torch.from_numpy(f).unsqueeze(0) for f in flows], dim=0) | |
return flows.to(flow_uv.device).permute(0, 3, 1, 2) / 255.0 | |