Spaces:
Running
on
T4
Running
on
T4
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torchvision | |
import torchvision.models as models | |
from typing import Union, List, Tuple | |
import os | |
import video3d.utils.misc as misc | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from einops.layers.torch import Rearrange | |
class FeedForward(nn.Module): | |
def __init__(self, dim, hidden_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_dim, dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Transformer_layer(nn.Module): | |
def __init__(self, dim_feat=384, dim=1024, hidden_dim=1024, heads=16): | |
super().__init__() | |
''' | |
dim: the dim between each attention, mlp, also the input and output dim for the layer | |
hidden_dim: the dim inside qkv | |
dim_feat: condition feature dim | |
''' | |
dim_head = hidden_dim // heads | |
self.heads = heads | |
self.scale = dim_head ** -0.5 # 8 | |
self.norm = nn.LayerNorm(dim) | |
self.ffn = FeedForward( | |
dim=dim, | |
hidden_dim=(4 * dim), | |
dropout=0. | |
) | |
# cross attention part | |
self.to_cross_q = nn.Linear(dim, hidden_dim, bias=False) | |
self.to_cross_kv = nn.Linear(dim_feat, hidden_dim*2, bias=False) | |
self.cross_attend = nn.Softmax(dim=-1) | |
# self attention part | |
self.to_self_qkv = nn.Linear(dim, hidden_dim*3, bias=False) | |
self.self_attend = nn.Softmax(dim=-1) | |
def forward_cross_attn(self, x, feature): | |
x = self.norm(x) | |
q = self.to_cross_q(x) | |
k, v = self.to_cross_kv(feature).chunk(2, dim=-1) | |
qkv = (q, k, v) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | |
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
attn = self.cross_attend(dots) | |
out = torch.matmul(attn, v) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
return out | |
def forward_self_attn(self, x): | |
x = self.norm(x) | |
qkv = self.to_self_qkv(x).chunk(3, dim=-1) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | |
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
attn = self.self_attend(dots) | |
out = torch.matmul(attn, v) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
return out | |
def forward(self, x, feature): | |
''' | |
x: [B, N, dim] | |
feature: [B, N, dim_feat] | |
''' | |
cross_token = self.forward_cross_attn(x, feature) | |
cross_token = cross_token + x | |
self_token = self.forward_self_attn(cross_token) | |
self_token = self_token + cross_token | |
out = self.ffn(self_token) | |
out = out + self_token | |
return out | |
class Triplane_Transformer(nn.Module): | |
def __init__(self, emb_dim=1024, emb_num=1024, num_layers=16, | |
triplane_dim=80, triplane_scale=7.): | |
super().__init__() | |
self.learnable_embedding = nn.Parameter(torch.randn(1, emb_num, emb_dim)) | |
self.layers = nn.ModuleList([]) | |
for _ in range(num_layers): | |
self.layers.append( | |
Transformer_layer( | |
dim_feat=384, | |
dim=emb_dim, | |
hidden_dim=emb_dim | |
) | |
) | |
self.triplane_dim = triplane_dim | |
self.triplane_scale = triplane_scale | |
self.to_triplane = nn.ConvTranspose2d( | |
in_channels=emb_dim, | |
out_channels=3 * triplane_dim, | |
kernel_size=4, | |
padding=1, | |
stride=2 | |
) | |
self.norm = nn.LayerNorm(emb_dim) | |
def sample_feat(self, feat_maps, pts): | |
''' | |
feat_maps: [B, 3, C, H, W] | |
pts: [B, K, 3] | |
''' | |
pts = pts / (self.triplane_scale / 2) | |
pts_xy = pts[..., [0,1]] | |
pts_yz = pts[..., [1,2]] | |
pts_xz = pts[..., [0,2]] | |
feat_xy = feat_maps[:, 0, :, :, :] | |
feat_yz = feat_maps[:, 1, :, :, :] | |
feat_xz = feat_maps[:, 2, :, :, :] | |
sampled_feat_xy = F.grid_sample( | |
feat_xy, pts_xy.unsqueeze(1), mode='bilinear', align_corners=True | |
) | |
sampled_feat_yz = F.grid_sample( | |
feat_yz, pts_yz.unsqueeze(1), mode='bilinear', align_corners=True | |
) | |
sampled_feat_xz = F.grid_sample( | |
feat_xz, pts_xz.unsqueeze(1), mode='bilinear', align_corners=True | |
) | |
sampled_feat = torch.cat([sampled_feat_xy, sampled_feat_yz, sampled_feat_xz], dim=1).squeeze(-2) # [B, F, K] | |
sampled_feat = sampled_feat.permute(0, 2, 1) | |
return sampled_feat | |
def forward(self, feature, pts): | |
''' | |
feature: [B, N, dim_feat] | |
''' | |
batch_size = feature.shape[0] | |
embedding = self.learnable_embedding.repeat(batch_size, 1, 1) | |
x = embedding | |
for layer in self.layers: | |
x = layer(x, feature) | |
x = self.norm(x) | |
# x: [B, 32x32, 1024] | |
batch_size, pwph, feat_dim = x.shape | |
ph = int(pwph ** 0.5) | |
pw = int(pwph ** 0.5) | |
triplane_feat = x.reshape(batch_size, ph, pw, feat_dim).permute(0, 3, 1, 2) | |
triplane_feat = self.to_triplane(triplane_feat) # [B, C, 64, 64] | |
triplane_feat = triplane_feat.reshape(triplane_feat.shape[0], 3, self.triplane_dim, triplane_feat.shape[-2], triplane_feat.shape[-1]) | |
pts_feat = self.sample_feat(triplane_feat, pts) | |
return pts_feat | |