kyleleey
first commit
98a77e0
raw
history blame
10.3 kB
import os
# os.environ['HUGGINGFACE_HUB_CACHE'] = '/work/tomj/cache/huggingface_hub'
# os.environ['HF_HOME'] = '/work/tomj/cache/huggingface_hub'
os.environ['HUGGINGFACE_HUB_CACHE'] = '/viscam/u/zzli'
os.environ['HF_HOME'] = '/viscam/u/zzli'
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler, DDIMScheduler
# Suppress partial model loading warning
logging.set_verbosity_error()
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
class SpecifyGradient(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
return torch.zeros([1], device=input_tensor.device, dtype=input_tensor.dtype) # Dummy loss value
@staticmethod
@custom_bwd
def backward(ctx, grad):
gt_grad, = ctx.saved_tensors
batch_size = len(gt_grad)
return gt_grad / batch_size, None
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
class StableDiffusion(nn.Module):
def __init__(self, device, sd_version='2.1', hf_key=None, torch_dtype=torch.float32):
super().__init__()
self.device = device
self.sd_version = sd_version
self.torch_dtype = torch_dtype
print(f'[INFO] loading stable diffusion...')
if hf_key is not None:
print(f'[INFO] using hugging face custom model key: {hf_key}')
model_key = hf_key
elif self.sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif self.sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif self.sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
else:
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
# Create model
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", torch_dtype=torch_dtype).to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder").to(self.device)
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", torch_dtype=torch_dtype).to(self.device)
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
# self.scheduler = PNDMScheduler.from_pretrained(model_key, subfolder="scheduler")
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
print(f'[INFO] loaded stable diffusion!')
def get_text_embeds(self, prompt, negative_prompt):
# prompt, negative_prompt: [str]
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
with torch.no_grad():
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt')
with torch.no_grad():
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def train_step(self, text_embeddings, pred_rgb,
guidance_scale=100, loss_weight=1.0, min_step_pct=0.02, max_step_pct=0.98, return_aux=False):
pred_rgb = pred_rgb.to(self.torch_dtype)
text_embeddings = text_embeddings.to(self.torch_dtype)
b = pred_rgb.shape[0]
# interp to 512x512 to be fed into vae.
# _t = time.time()
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# torch.cuda.synchronize(); print(f'[TIME] guiding: interp {time.time() - _t:.4f}s')
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
min_step = int(self.num_train_timesteps * min_step_pct)
max_step = int(self.num_train_timesteps * max_step_pct)
t = torch.randint(min_step, max_step + 1, [b], dtype=torch.long, device=self.device)
# encode image into latents with vae, requires grad!
# _t = time.time()
latents = self.encode_imgs(pred_rgb_512)
# torch.cuda.synchronize(); print(f'[TIME] guiding: vae enc {time.time() - _t:.4f}s')
# predict the noise residual with unet, NO grad!
# _t = time.time()
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2)
t_input = torch.cat([t, t])
noise_pred = self.unet(latent_model_input, t_input, encoder_hidden_states=text_embeddings).sample
# torch.cuda.synchronize(); print(f'[TIME] guiding: unet {time.time() - _t:.4f}s')
# perform guidance (high scale from paper!)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
# noise_pred = noise_pred_text + guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# w(t), sigma_t^2
w = (1 - self.alphas[t])
# w = self.alphas[t] ** 0.5 * (1 - self.alphas[t])
grad = loss_weight * w[:, None, None, None] * (noise_pred - noise)
# clip grad for stable training?
# grad = grad.clamp(-10, 10)
grad = torch.nan_to_num(grad)
# since we omitted an item in grad, we need to use the custom function to specify the gradient
# _t = time.time()
# loss = SpecifyGradient.apply(latents, grad)
# torch.cuda.synchronize(); print(f'[TIME] guiding: backward {time.time() - _t:.4f}s')
targets = (latents - grad).detach()
loss = 0.5 * F.mse_loss(latents.float(), targets, reduction='sum') / latents.shape[0]
if return_aux:
aux = {'grad': grad, 't': t, 'w': w}
return loss, aux
else:
return loss
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5, latents=None):
if latents is None:
latents = torch.randn((text_embeddings.shape[0] // 2, self.unet.config.in_channels, height // 8, width // 8), device=self.device)
self.scheduler.set_timesteps(num_inference_steps)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_text + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)['prev_sample']
return latents
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
with torch.no_grad():
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def encode_imgs(self, imgs):
# imgs: [B, 3, H, W]
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.sample() * self.vae.config.scaling_factor
return latents
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50, guidance_scale=7.5, latents=None):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
# Prompts -> text embeds
text_embeds = self.get_text_embeds(prompts, negative_prompts) # [2, 77, 768]
# Text embeds -> img latents
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale) # [1, 4, 64, 64]
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
return imgs
if __name__ == '__main__':
import argparse
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument('prompt', type=str)
parser.add_argument('--negative', default='', type=str)
parser.add_argument('--sd_version', type=str, default='2.1', choices=['1.5', '2.0', '2.1'], help="stable diffusion version")
parser.add_argument('--hf_key', type=str, default=None, help="hugging face Stable diffusion model key")
parser.add_argument('-H', type=int, default=512)
parser.add_argument('-W', type=int, default=512)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--steps', type=int, default=50)
opt = parser.parse_args()
seed_everything(opt.seed)
device = torch.device('cuda')
sd = StableDiffusion(device, opt.sd_version, opt.hf_key)
imgs = sd.prompt_to_img(opt.prompt, opt.negative, opt.H, opt.W, opt.steps)
# visualize image
plt.imshow(imgs[0])
plt.show()
plt.savefig(f'{opt.prompt}.png')