3DFauna_demo / video3d /renderer.py
kyleleey
first commit
98a77e0
raw
history blame
13.9 kB
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
# import pytorch3d
# import pytorch3d.loss
# import pytorch3d.renderer
# import pytorch3d.structures
# import pytorch3d.io
# import pytorch3d.transforms
from PIL import Image
from .utils import sphere
from einops import rearrange
def update_camera_pose(cameras, position, at):
cameras.R = pytorch3d.renderer.look_at_rotation(position, at).to(cameras.device)
cameras.T = -torch.bmm(cameras.R.transpose(1, 2), position[:, :, None])[:, :, 0]
def get_soft_rasterizer_settings(image_size, sigma=1e-6, gamma=1e-6, faces_per_pixel=30):
blend_params = pytorch3d.renderer.BlendParams(sigma=sigma, gamma=gamma)
settings = pytorch3d.renderer.RasterizationSettings(
image_size=image_size,
blur_radius=np.log(1. / 1e-4 - 1.) * blend_params.sigma,
faces_per_pixel=faces_per_pixel,
)
return settings, blend_params
class Renderer(nn.Module):
def __init__(self, cfgs):
super().__init__()
self.cfgs = cfgs
self.device = cfgs.get('device', 'cpu')
self.image_size = cfgs.get('out_image_size', 64)
self.full_size_h = cfgs.get('full_size_h', 1080)
self.full_size_w = cfgs.get('full_size_w', 1920)
self.fov_w = cfgs.get('fov_w', 60)
# self.fov_h = cfgs.get('fov_h', 30)
self.fov_h = np.arctan(np.tan(self.fov_w /2 /180*np.pi) / self.full_size_w * self.full_size_h) *2 /np.pi*180
self.crop_fov_approx = cfgs.get('crop_fov_approx', 25)
self.cam_pos_z_offset = cfgs.get('cam_pos_z_offset', 10.)
self.max_range = np.tan(min(self.fov_h, self.fov_w) /2 /180 * np.pi) * self.cam_pos_z_offset
cam_pos = torch.FloatTensor([[0, 0, self.cam_pos_z_offset]]).to(self.device)
cam_at = torch.FloatTensor([[0, 0, 0]]).to(self.device)
self.rot_rep = cfgs.get('rot_rep', 'euler_angle')
# self.cameras = pytorch3d.renderer.FoVPerspectiveCameras(fov=self.crop_fov_approx).to(self.device)
# update_camera_pose(self.cameras, position=cam_pos, at=cam_at)
# self.full_cameras = pytorch3d.renderer.FoVPerspectiveCameras(fov=self.fov_w).to(self.device)
# update_camera_pose(self.full_cameras, position=cam_pos, at=cam_at)
self.image_renderer = self._create_image_renderer()
self.ico_sphere_subdiv = cfgs.get('ico_sphere_subdiv', 2)
self.init_shape_scale_xy = float(cfgs.get('init_shape_scale_xy', 1.))
self.init_shape_scale_z = float(cfgs.get('init_shape_scale_z', 1.))
# init_verts, init_faces, init_aux = pytorch3d.io.load_obj(cfgs['init_shape_obj'], create_texture_atlas=True, device=self.device)
# self.init_verts = init_verts *self.init_shape_scale
# self.meshes = pytorch3d.structures.Meshes(verts=[self.init_verts], faces=[init_faces.verts_idx]).to(self.device)
# self.tex_faces_uv = init_faces.textures_idx.unsqueeze(0)
# self.tex_verts_uv = init_aux.verts_uvs.unsqueeze(0)
# self.texture_atlas = init_aux.texture_atlas.unsqueeze(0)
# self.num_verts_total = init_verts.size(0)
# cmap = plt.cm.get_cmap('hsv', self.num_verts_total)
# verts_texture = cmap(np.random.permutation(self.num_verts_total))[:,:3]
# self.verts_texture = torch.FloatTensor(verts_texture)
# debug_uvtex = cfgs.get('debug_uvtex', None)
# if debug_uvtex is not None:
# face_tex_map = Image.open(debug_uvtex).convert('RGB').resize((512, 512))
# self.face_tex_map = torch.FloatTensor(np.array(face_tex_map)).permute(2,0,1) / 255.
# else:
# self.face_tex_map = None
meshes, aux = sphere.get_symmetric_ico_sphere(subdiv=self.ico_sphere_subdiv, return_tex_uv=True, return_face_tex_map=True, device=self.device)
init_verts = meshes.verts_padded()
self.init_verts = init_verts * torch.FloatTensor([self.init_shape_scale_xy, self.init_shape_scale_xy, self.init_shape_scale_z]).view(1,1,3).to(init_verts.device)
# TODO: is this needed?
self.meshes = meshes.update_padded(init_verts * 0)
self.tex_faces_uv = aux['face_tex_ids'].unsqueeze(0)
self.tex_verts_uv = aux['verts_tex_uv'].unsqueeze(0)
self.face_tex_map = aux['face_tex_map'].permute(2,0,1)
self.tex_map_seam_mask = aux['seam_mask'].permute(2,0,1)
self.num_verts_total = init_verts.size(1)
self.num_verts_seam = aux['num_verts_seam']
self.num_verts_one_side = aux['num_verts_one_side']
# hack to turn off texture symmetry
if cfgs.get('disable_sym_tex', False):
tex_uv_seam1 = self.tex_verts_uv[:,:aux['num_verts_seam']].clone()
tex_uv_seam1[:,:,0] = tex_uv_seam1[:,:,0] /2 + 0.5
tex_uv_side1 = self.tex_verts_uv[:,aux['num_verts_seam']:aux['num_verts_seam']+aux['num_verts_one_side']].clone()
tex_uv_side1[:,:,0] = tex_uv_side1[:,:,0] /2 + 0.5
tex_uv_seam2 = self.tex_verts_uv[:,:aux['num_verts_seam']].clone()
tex_uv_seam2[:,:,0] = tex_uv_seam2[:,:,0] /2
tex_uv_side2 = self.tex_verts_uv[:,aux['num_verts_seam']+aux['num_verts_one_side']:].clone()
tex_uv_side2[:,:,0] = tex_uv_side2[:,:,0] /2
self.tex_verts_uv = torch.cat([tex_uv_seam1, tex_uv_side1, tex_uv_side2, tex_uv_seam2], 1)
num_faces = self.tex_faces_uv.shape[1]
face_tex_ids1 = self.tex_faces_uv[:, :num_faces//2].clone()
face_tex_ids2 = self.tex_faces_uv[:, num_faces//2:].clone()
face_tex_ids2[face_tex_ids2 < aux['num_verts_seam']] += aux['num_verts_seam'] + 2*aux['num_verts_one_side']
self.tex_faces_uv = torch.cat([face_tex_ids1, face_tex_ids2], 1)
self.face_tex_map = torch.cat([self.face_tex_map, self.face_tex_map.flip(2)], 2)
self.tex_map_seam_mask = torch.cat([self.tex_map_seam_mask, self.tex_map_seam_mask.flip(2)], 2)
def _create_silhouette_renderer(self):
settings, blend_params = get_soft_rasterizer_settings(self.image_size)
return pytorch3d.renderer.MeshRenderer(
rasterizer=pytorch3d.renderer.MeshRasterizer(cameras=self.cameras, raster_settings=settings),
shader=pytorch3d.renderer.SoftSilhouetteShader(cameras=self.cameras, blend_params=blend_params)
)
def _create_image_renderer(self):
settings, blend_params = get_soft_rasterizer_settings(self.image_size)
lights = pytorch3d.renderer.DirectionalLights(device=self.device,
ambient_color=((1., 1., 1.),),
diffuse_color=((0., 0., 0.),),
specular_color=((0., 0., 0.),),
direction=((0, 1, 0),))
return pytorch3d.renderer.MeshRenderer(
rasterizer=pytorch3d.renderer.MeshRasterizer(cameras=self.cameras, raster_settings=settings),
shader=pytorch3d.renderer.SoftPhongShader(device=self.device, lights=lights, cameras=self.cameras, blend_params=blend_params)
)
def transform_verts(self, verts, pose):
b, f, _ = pose.shape
if self.rot_rep == 'euler_angle' or self.rot_rep == 'soft_calss':
rot_mat = pytorch3d.transforms.euler_angles_to_matrix(pose[...,:3].view(-1,3), convention='XYZ')
tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
elif self.rot_rep == 'quaternion':
rot_mat = pytorch3d.transforms.quaternion_to_matrix(pose[...,:4].view(-1,4))
tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
elif self.rot_rep == 'lookat':
rot_mat = pose[...,:9].view(-1,3,3)
tsf = pytorch3d.transforms.Rotate(rot_mat, device=pose.device)
else:
raise NotImplementedError
tsf = tsf.compose(pytorch3d.transforms.Translate(pose[...,-3:].view(-1,3), device=pose.device))
new_verts = tsf.transform_points(verts.view(b*f, *verts.shape[2:]))
return new_verts.view(b, f, *new_verts.shape[1:])
# def transform_mesh(self, mesh, pose):
# mesh_verts = mesh.verts_padded()
# new_mesh_verts = self.transform_verts(mesh_verts, pose)
# new_mesh = mesh.update_padded(new_mesh_verts)
# return new_mesh
def symmetrize_shape(self, shape):
verts_seam = shape[:,:,:self.num_verts_seam] * torch.FloatTensor([0,1,1]).to(shape.device)
verts_one_side = shape[:,:,self.num_verts_seam:self.num_verts_seam+self.num_verts_one_side] * torch.FloatTensor([1,1,1]).to(shape.device)
verts_other_side = verts_one_side * torch.FloatTensor([-1,1,1]).to(shape.device)
shape = torch.cat([verts_seam, verts_one_side, verts_other_side], 2)
return shape
def get_deformed_mesh(self, shape, pose=None, return_shape=False):
b, f, _, _ = shape.shape
if pose is not None:
shape = self.transform_verts(shape, pose)
mesh = self.meshes.extend(b*f)
mesh = mesh.update_padded(rearrange(shape, 'b f ... -> (b f) ...'))
if return_shape:
return shape, mesh
else:
return mesh
def get_textures(self, tex_im):
b, f, c, h, w = tex_im.shape
## top half texture map in ico_sphere.obj is unused, pad with zeros
# if 'sym' not in self.cfgs.get('init_shape_obj', ''):
# tex_im = torch.cat([torch.zeros_like(tex_im), tex_im], 3)
# tex_im = nn.functional.interpolate(tex_im, (h, w), mode='bilinear', align_corners=False)
textures = pytorch3d.renderer.TexturesUV(maps=tex_im.view(b*f, *tex_im.shape[2:]).permute(0, 2, 3, 1), # texture maps are BxHxWx3
faces_uvs=self.tex_faces_uv.repeat(b*f, 1, 1),
verts_uvs=self.tex_verts_uv.repeat(b*f, 1, 1))
return textures
def render_flow(self, meshes, shape, pose, deformed_shape=None):
# verts = meshes.verts_padded() # (B*F)xVx3
b, f, _, _ = shape.shape
if f < 2:
return None
if deformed_shape is None:
deformed_shape, meshes = self.get_deformed_mesh(shape.detach(), pose=pose, return_shape=True)
im_size = torch.FloatTensor([self.image_size, self.image_size]).to(shape.device) # (w,h)
verts_2d = self.cameras.transform_points_screen(deformed_shape.view(b*f, *deformed_shape.shape[2:]), im_size.view(1,2).repeat(b*f,1), eps=1e-7)
verts_2d = verts_2d.view(b, f, *verts_2d.shape[1:])
verts_flow = verts_2d[:, 1:, :, :2] - verts_2d[:, :-1, :, :2] # Bx(F-1)xVx(x,y)
verts_flow = verts_flow / im_size.view(1, 1, 1, 2) * 0.5 + 0.5 # 0~1
flow_tex = torch.nn.functional.pad(verts_flow, pad=[0, 1, 0, 0, 0, 1]) # BxFxVx3
# meshes = meshes.detach() # detach mesh when rendering flow (only texture has gradients)
# meshes = self.get_deformed_mesh(shape.detach())
meshes.textures = pytorch3d.renderer.TexturesVertex(verts_features=flow_tex.view(b*f, -1, 3))
flow = self.image_renderer(meshes_world=meshes, cameras=self.cameras)
# settings, blend_params = get_soft_rasterizer_settings(image_size=self.image_size, sigma=1e-6, gamma=1e-6, faces_per_pixel=5)
# flow = self.image_renderer(meshes_world=meshes, cameras=self.cameras, raster_settings=settings, blend_params=blend_params)
flow = flow.view(b, f, *flow.shape[1:])[:, :-1] # Bx(F-1)xHxWx3
flow_mask = (flow[:, :, :, :, 3:] > 0.01).float()
return (flow[:, :, :, :, :2] - 0.5) * 2 * flow_mask # Bx(F-1)xHxWx2
def forward(self, pose, texture, shape, crop_bbox=None, render_flow=True):
b, f, _ = pose.shape
## compensate crop with intrinsics, assuming square crops
# x0, y0, w, h = crop_bbox.unbind(2)
# fx = 1 / np.tan(self.fov_w / 2 /180*np.pi)
# fy = fx
# sx = w / self.full_size_w
# sy = sx
# cx = ((x0+w/2) - (self.full_size_w/2)) / (self.full_size_w/2) # [0-w] -> [-1,1]
# cy = ((y0+h/2) - (self.full_size_h/2)) / (self.full_size_w/2)
# znear = 1
# zfar = 100
# v1 = zfar / (zfar - znear)
# v2 = -(zfar * znear) / (zfar - znear)
#
# # K = [[[ fx/sx, 0.0000, cx/sx, 0.0000],
# # [ 0.0000, fy/sy, cy/sy, 0.0000],
# # [ 0.0000, 0.0000, v1, v2],
# # [ 0.0000, 0.0000, 1.0000, 0.0000]]]
# zeros = torch.zeros_like(sx)
# K_row1 = torch.stack([fx/sx, zeros, cx/sx, zeros], 2)
# K_row2 = torch.stack([zeros, fy/sy, cy/sy, zeros], 2)
# K_row3 = torch.stack([zeros, zeros, zeros+v1, zeros+v2], 2)
# K_row4 = torch.stack([zeros, zeros, zeros+1, zeros], 2)
# K = torch.stack([K_row1, K_row2, K_row3, K_row4], 2) # BxFx4x4
# self.crop_cameras = pytorch3d.renderer.FoVPerspectiveCameras(K=K.view(-1, 4, 4), R=self.cameras.R, T=self.cameras.T, device=self.device)
# # reset znear, zfar to scalar to bypass broadcast bug in pytorch3d blending
# self.crop_cameras.znear = znear
# self.crop_cameras.zfar = zfar
deformed_shape, mesh = self.get_deformed_mesh(shape, pose=pose, return_shape=True)
if render_flow:
flow = self.render_flow(mesh, shape, pose, deformed_shape=deformed_shape) # Bx(F-1)xHxWx2
# flow = self.render_flow(mesh, shape, pose, deformed_shape=None) # Bx(F-1)xHxWx2
else:
flow = None
mesh.textures = self.get_textures(texture)
image = self.image_renderer(meshes_world=mesh, cameras=self.cameras)
image = image.view(b, f, *image.shape[1:])
return image, flow, mesh