3DFauna_demo / video3d /cub_dataloaders.py
kyleleey
first commit
98a77e0
import os.path as osp
import cv2
import numpy as np
import scipy.io as sio
import torch
from PIL import Image
from torch.utils.data import Dataset
from types import SimpleNamespace
def get_cub_loader(data_dir, split='test', is_validation=False, batch_size=256, num_workers=4, image_size=256):
opts = SimpleNamespace()
opts.data_dir = data_dir
opts.padding_frac = 0.05
opts.jitter_frac = 0.05
opts.input_size = image_size
opts.split = split
dataset = CUBDataset(opts)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=not is_validation,
num_workers=num_workers,
pin_memory=True
)
return loader
class CUBDataset(Dataset):
def __init__(self, opts):
super().__init__()
self.opts = opts
self.img_size = opts.input_size
self.jitter_frac = opts.jitter_frac
self.padding_frac = opts.padding_frac
self.split = opts.split
self.data_dir = opts.data_dir
self.data_cache_dir = osp.join(self.data_dir, 'cachedir/cub')
self.img_dir = osp.join(self.data_dir, 'images')
self.anno_path = osp.join(self.data_cache_dir, 'data', '%s_cub_cleaned.mat' % self.split)
self.anno_sfm_path = osp.join(self.data_cache_dir, 'sfm', 'anno_%s.mat' % self.split)
if not osp.exists(self.anno_path):
print('%s doesnt exist!' % self.anno_path)
import pdb; pdb.set_trace()
# Load the annotation file.
print('loading %s' % self.anno_path)
self.anno = sio.loadmat(
self.anno_path, struct_as_record=False, squeeze_me=True)['images']
self.anno_sfm = sio.loadmat(
self.anno_sfm_path, struct_as_record=False, squeeze_me=True)['sfm_anno']
self.kp_perm = np.array([1, 2, 3, 4, 5, 6, 11, 12, 13, 10, 7, 8, 9, 14, 15]) - 1;
self.num_imgs = len(self.anno)
print('%d images' % self.num_imgs)
def forward_img(self, index):
data = self.anno[index]
data_sfm = self.anno_sfm[0]
# sfm_pose = (sfm_c, sfm_t, sfm_r)
sfm_pose = [np.copy(data_sfm.scale), np.copy(data_sfm.trans), np.copy(data_sfm.rot)]
sfm_rot = np.pad(sfm_pose[2], (0,1), 'constant')
sfm_rot[3, 3] = 1
sfm_pose[2] = quaternion_from_matrix(sfm_rot, isprecise=True)
img_path = osp.join(self.img_dir, str(data.rel_path))
#img_path = img_path.replace("JPEG", "jpg")
img = np.array(Image.open(img_path))
# Some are grayscale:
if len(img.shape) == 2:
img = np.repeat(np.expand_dims(img, 2), 3, axis=2)
mask = data.mask
mask = np.expand_dims(mask, 2)
h,w,_ = mask.shape
# Adjust to 0 indexing
bbox = np.array(
[data.bbox.x1, data.bbox.y1, data.bbox.x2, data.bbox.y2],
float) - 1
parts = data.parts.T.astype(float)
kp = np.copy(parts)
vis = kp[:, 2] > 0
kp[vis, :2] -= 1
# Peturb bbox
if self.split == 'train':
bbox = peturb_bbox(
bbox, pf=self.padding_frac, jf=self.jitter_frac)
else:
bbox = peturb_bbox(
bbox, pf=self.padding_frac, jf=0)
bbox = square_bbox(bbox)
# crop image around bbox, translate kps
img, mask, kp, sfm_pose = self.crop_image(img, mask, bbox, kp, vis, sfm_pose)
# scale image, and mask. And scale kps.
img, mask, kp, sfm_pose = self.scale_image(img, mask, kp, vis, sfm_pose)
# Mirror image on random.
if self.split == 'train':
img, mask, kp, sfm_pose = self.mirror_image(img, mask, kp, sfm_pose)
# Normalize kp to be [-1, 1]
img_h, img_w = img.shape[:2]
kp_norm, sfm_pose = self.normalize_kp(kp, sfm_pose, img_h, img_w)
# img = Image.fromarray(np.asarray(img, np.uint8))
mask = np.asarray(mask, np.float32)
return img, kp_norm, mask, sfm_pose, img_path
def normalize_kp(self, kp, sfm_pose, img_h, img_w):
vis = kp[:, 2, None] > 0
new_kp = np.stack([2 * (kp[:, 0] / img_w) - 1,
2 * (kp[:, 1] / img_h) - 1,
kp[:, 2]]).T
sfm_pose[0] *= (1.0/img_w + 1.0/img_h)
sfm_pose[1][0] = 2.0 * (sfm_pose[1][0] / img_w) - 1
sfm_pose[1][1] = 2.0 * (sfm_pose[1][1] / img_h) - 1
new_kp = vis * new_kp
return new_kp, sfm_pose
def crop_image(self, img, mask, bbox, kp, vis, sfm_pose):
# crop image and mask and translate kps
img = crop(img, bbox, bgval=1)
mask = crop(mask, bbox, bgval=0)
kp[vis, 0] -= bbox[0]
kp[vis, 1] -= bbox[1]
sfm_pose[1][0] -= bbox[0]
sfm_pose[1][1] -= bbox[1]
return img, mask, kp, sfm_pose
def scale_image(self, img, mask, kp, vis, sfm_pose):
# Scale image so largest bbox size is img_size
bwidth = np.shape(img)[0]
bheight = np.shape(img)[1]
scale = self.img_size / float(max(bwidth, bheight))
img_scale, _ = resize_img(img, scale)
# if img_scale.shape[0] != self.img_size:
# print('bad!')
# import ipdb; ipdb.set_trace()
# mask_scale, _ = resize_img(mask, scale)
# mask_scale, _ = resize_img(mask, scale, interpolation=cv2.INTER_NEAREST)
mask_scale, _ = resize_img(mask, scale)
kp[vis, :2] *= scale
sfm_pose[0] *= scale
sfm_pose[1] *= scale
return img_scale, mask_scale, kp, sfm_pose
def mirror_image(self, img, mask, kp, sfm_pose):
kp_perm = self.kp_perm
if np.random.rand(1) > 0.5:
# Need copy bc torch collate doesnt like neg strides
img_flip = img[:, ::-1, :].copy()
mask_flip = mask[:, ::-1].copy()
# Flip kps.
new_x = img.shape[1] - kp[:, 0] - 1
kp_flip = np.hstack((new_x[:, None], kp[:, 1:]))
kp_flip = kp_flip[kp_perm, :]
# Flip sfm_pose Rot.
R = quaternion_matrix(sfm_pose[2])
flip_R = np.diag([-1, 1, 1, 1]).dot(R.dot(np.diag([-1, 1, 1, 1])))
sfm_pose[2] = quaternion_from_matrix(flip_R, isprecise=True)
# Flip tx
tx = img.shape[1] - sfm_pose[1][0] - 1
sfm_pose[1][0] = tx
return img_flip, mask_flip, kp_flip, sfm_pose
else:
return img, mask, kp, sfm_pose
def __len__(self):
return self.num_imgs
def __getitem__(self, index):
img, kp, mask, sfm_pose, img_path = self.forward_img(index)
sfm_pose[0].shape = 1
mask = np.expand_dims(mask, 2)
images = torch.FloatTensor(img /255.).permute(2,0,1).unsqueeze(0)
masks = torch.FloatTensor(mask).permute(2,0,1).repeat(1,3,1,1)
mask_dt = compute_distance_transform(masks)
# flows = torch.zeros(1,2, self.img_size, self.img_size)
flows = torch.zeros(1)
bboxs = torch.FloatTensor([0, 0, 0, self.img_size, self.img_size, 1, 1, 0]).unsqueeze(0) # frame_id, crop_x0, crop_y0, crop_w, crop_h, resize_sx, resize_sy, sharpness
bg_image = images[0]
seq_idx = torch.LongTensor([index])
frame_idx = torch.LongTensor([0])
return images, masks, mask_dt, flows, bboxs, bg_image, seq_idx, frame_idx
def compute_distance_transform(mask):
mask_dt = []
for m in mask:
dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
inv_dt = torch.FloatTensor(cv2.distanceTransform(np.uint8(1 - m[0]), cv2.DIST_L2, cv2.DIST_MASK_PRECISE))
mask_dt += [torch.stack([dt, inv_dt], 0)]
return torch.stack(mask_dt, 0) # Bx2xHxW
def resize_img(img, scale_factor):
new_size = (np.round(np.array(img.shape[:2]) * scale_factor)).astype(int)
new_img = cv2.resize(img, (new_size[1], new_size[0]))
# This is scale factor of [height, width] i.e. [y, x]
actual_factor = [new_size[0] / float(img.shape[0]),
new_size[1] / float(img.shape[1])]
return new_img, actual_factor
def peturb_bbox(bbox, pf=0, jf=0):
'''
Jitters and pads the input bbox.
Args:
bbox: Zero-indexed tight bbox.
pf: padding fraction.
jf: jittering fraction.
Returns:
pet_bbox: Jittered and padded box. Might have -ve or out-of-image coordinates
'''
pet_bbox = [coord for coord in bbox]
bwidth = bbox[2] - bbox[0] + 1
bheight = bbox[3] - bbox[1] + 1
pet_bbox[0] -= (pf*bwidth) + (1-2*np.random.random())*jf*bwidth
pet_bbox[1] -= (pf*bheight) + (1-2*np.random.random())*jf*bheight
pet_bbox[2] += (pf*bwidth) + (1-2*np.random.random())*jf*bwidth
pet_bbox[3] += (pf*bheight) + (1-2*np.random.random())*jf*bheight
return pet_bbox
def square_bbox(bbox):
'''
Converts a bbox to have a square shape by increasing size along non-max dimension.
'''
sq_bbox = [int(round(coord)) for coord in bbox]
bwidth = sq_bbox[2] - sq_bbox[0] + 1
bheight = sq_bbox[3] - sq_bbox[1] + 1
maxdim = float(max(bwidth, bheight))
dw_b_2 = int(round((maxdim-bwidth)/2.0))
dh_b_2 = int(round((maxdim-bheight)/2.0))
sq_bbox[0] -= dw_b_2
sq_bbox[1] -= dh_b_2
sq_bbox[2] = sq_bbox[0] + maxdim - 1
sq_bbox[3] = sq_bbox[1] + maxdim - 1
return sq_bbox
def crop(img, bbox, bgval=0):
'''
Crops a region from the image corresponding to the bbox.
If some regions specified go outside the image boundaries, the pixel values are set to bgval.
Args:
img: image to crop
bbox: bounding box to crop
bgval: default background for regions outside image
'''
bbox = [int(round(c)) for c in bbox]
bwidth = bbox[2] - bbox[0] + 1
bheight = bbox[3] - bbox[1] + 1
im_shape = np.shape(img)
im_h, im_w = im_shape[0], im_shape[1]
nc = 1 if len(im_shape) < 3 else im_shape[2]
img_out = np.ones((bheight, bwidth, nc))*bgval
x_min_src = max(0, bbox[0])
x_max_src = min(im_w, bbox[2]+1)
y_min_src = max(0, bbox[1])
y_max_src = min(im_h, bbox[3]+1)
x_min_trg = x_min_src - bbox[0]
x_max_trg = x_max_src - x_min_src + x_min_trg
y_min_trg = y_min_src - bbox[1]
y_max_trg = y_max_src - y_min_src + y_min_trg
img_out[y_min_trg:y_max_trg, x_min_trg:x_max_trg, :] = img[y_min_src:y_max_src, x_min_src:x_max_src, :]
return img_out
# https://github.com/akanazawa/cmr/blob/master/utils/transformations.py
import math
import numpy
_EPS = numpy.finfo(float).eps * 4.0
def quaternion_matrix(quaternion):
"""Return homogeneous rotation matrix from quaternion.
>>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
>>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
True
>>> M = quaternion_matrix([1, 0, 0, 0])
>>> numpy.allclose(M, numpy.identity(4))
True
>>> M = quaternion_matrix([0, 1, 0, 0])
>>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
True
"""
q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
n = numpy.dot(q, q)
if n < _EPS:
return numpy.identity(4)
q *= math.sqrt(2.0 / n)
q = numpy.outer(q, q)
return numpy.array([
[1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0],
[ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0],
[ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
[ 0.0, 0.0, 0.0, 1.0]])
def quaternion_from_matrix(matrix, isprecise=False):
"""Return quaternion from rotation matrix.
If isprecise is True, the input matrix is assumed to be a precise rotation
matrix and a faster algorithm is used.
>>> q = quaternion_from_matrix(numpy.identity(4), True)
>>> numpy.allclose(q, [1, 0, 0, 0])
True
>>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1]))
>>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0])
True
>>> R = rotation_matrix(0.123, (1, 2, 3))
>>> q = quaternion_from_matrix(R, True)
>>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786])
True
>>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0],
... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]]
>>> q = quaternion_from_matrix(R)
>>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611])
True
>>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0],
... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]]
>>> q = quaternion_from_matrix(R)
>>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603])
True
>>> R = random_rotation_matrix()
>>> q = quaternion_from_matrix(R)
>>> is_same_transform(R, quaternion_matrix(q))
True
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
... quaternion_from_matrix(R, isprecise=True))
True
>>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0)
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
... quaternion_from_matrix(R, isprecise=True))
True
"""
M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
if isprecise:
q = numpy.empty((4, ))
t = numpy.trace(M)
if t > M[3, 3]:
q[0] = t
q[3] = M[1, 0] - M[0, 1]
q[2] = M[0, 2] - M[2, 0]
q[1] = M[2, 1] - M[1, 2]
else:
i, j, k = 0, 1, 2
if M[1, 1] > M[0, 0]:
i, j, k = 1, 2, 0
if M[2, 2] > M[i, i]:
i, j, k = 2, 0, 1
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
q[i] = t
q[j] = M[i, j] + M[j, i]
q[k] = M[k, i] + M[i, k]
q[3] = M[k, j] - M[j, k]
q = q[[3, 0, 1, 2]]
q *= 0.5 / math.sqrt(t * M[3, 3])
else:
m00 = M[0, 0]
m01 = M[0, 1]
m02 = M[0, 2]
m10 = M[1, 0]
m11 = M[1, 1]
m12 = M[1, 2]
m20 = M[2, 0]
m21 = M[2, 1]
m22 = M[2, 2]
# symmetric matrix K
K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0],
[m01+m10, m11-m00-m22, 0.0, 0.0],
[m02+m20, m12+m21, m22-m00-m11, 0.0],
[m21-m12, m02-m20, m10-m01, m00+m11+m22]])
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = numpy.linalg.eigh(K)
q = V[[3, 0, 1, 2], numpy.argmax(w)]
if q[0] < 0.0:
numpy.negative(q, q)
return q